{"title":"Cloning and characterization of the histone variant gene H2A.Z in Bombyx mori","authors":"Jun Mei, Kunling Xu, Yuyi Huang, Jingwei Zhang, Qitao Qian, Jia Dong, Fudan Tong, Wei Yu, Meng Miao","doi":"10.1002/arch.22136","DOIUrl":null,"url":null,"abstract":"<p>H2A.Z, the most evolutionarily conserved variant of histone H2A, plays a pivotal role in chromatin remodeling and contributes significantly to gene transcription and genome stability. However, the role of H2A.Z in the silkworm (<i>Bombyx mori</i>) remains unclear. In this study, we cloned the <i>BmH2A.Z</i> from <i>B. mori</i>. The open reading frame of <i>BmH2A.Z</i> is 390 bp, encoding 129 amino acids, with a confirmed molecular weight of 13.4 kDa through prokaryotic expression analysis. Sequence analysis revealed that BmH2A.Z has a conserved H2A.Z domain and is closely related to the systemic evolution of other known H2A.Zs. The expression profile of <i>BmH2A.Z</i> at various developmental stages of the <i>B. mori</i> exhibited the highest expression level in the 1st instar, followed by the grain stage and the 2nd instar, and the lowest expression level in the moth. The highest transcript level of <i>BmH2A.Z</i> was observed in the head, with relatively lower levels detected in the blood than in the other tissues under consideration. In addition, the upregulation of BmH2A.Z resulted in the amplified expression of <i>B. mori</i> nucleopolyhedrovirus (BmNPV) genes, thus facilitating the proliferation of BmNPV. This study establishes a foundation for investigating the role of BmH2A.Z in <i>B. mori</i> and its participation in virus-host interactions.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22136","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
H2A.Z, the most evolutionarily conserved variant of histone H2A, plays a pivotal role in chromatin remodeling and contributes significantly to gene transcription and genome stability. However, the role of H2A.Z in the silkworm (Bombyx mori) remains unclear. In this study, we cloned the BmH2A.Z from B. mori. The open reading frame of BmH2A.Z is 390 bp, encoding 129 amino acids, with a confirmed molecular weight of 13.4 kDa through prokaryotic expression analysis. Sequence analysis revealed that BmH2A.Z has a conserved H2A.Z domain and is closely related to the systemic evolution of other known H2A.Zs. The expression profile of BmH2A.Z at various developmental stages of the B. mori exhibited the highest expression level in the 1st instar, followed by the grain stage and the 2nd instar, and the lowest expression level in the moth. The highest transcript level of BmH2A.Z was observed in the head, with relatively lower levels detected in the blood than in the other tissues under consideration. In addition, the upregulation of BmH2A.Z resulted in the amplified expression of B. mori nucleopolyhedrovirus (BmNPV) genes, thus facilitating the proliferation of BmNPV. This study establishes a foundation for investigating the role of BmH2A.Z in B. mori and its participation in virus-host interactions.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.