D Alex Quistberg, Stephen J Mooney, Tolga Tasdizen, Pablo Arbelaez, Quynh C Nguyen
{"title":"Invited commentary: deep learning-methods to amplify epidemiologic data collection and analyses.","authors":"D Alex Quistberg, Stephen J Mooney, Tolga Tasdizen, Pablo Arbelaez, Quynh C Nguyen","doi":"10.1093/aje/kwae215","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning is a subfield of artificial intelligence and machine learning, based mostly on neural networks and often combined with attention algorithms, that has been used to detect and identify objects in text, audio, images, and video. Serghiou and Rough (Am J Epidemiol. 2023;192(11):1904-1916) presented a primer for epidemiologists on deep learning models. These models provide substantial opportunities for epidemiologists to expand and amplify their research in both data collection and analyses by increasing the geographic reach of studies, including more research subjects, and working with large or high-dimensional data. The tools for implementing deep learning methods are not as straightforward or ubiquitous for epidemiologists as traditional regression methods found in standard statistical software, but there are exciting opportunities for interdisciplinary collaboration with deep learning experts, just as epidemiologists have with statisticians, health care providers, urban planners, and other professionals. Despite the novelty of these methods, epidemiologic principles of assessing bias, study design, interpretation, and others still apply when implementing deep learning methods or assessing the findings of studies that have used them.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":"322-326"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae215","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning is a subfield of artificial intelligence and machine learning, based mostly on neural networks and often combined with attention algorithms, that has been used to detect and identify objects in text, audio, images, and video. Serghiou and Rough (Am J Epidemiol. 2023;192(11):1904-1916) presented a primer for epidemiologists on deep learning models. These models provide substantial opportunities for epidemiologists to expand and amplify their research in both data collection and analyses by increasing the geographic reach of studies, including more research subjects, and working with large or high-dimensional data. The tools for implementing deep learning methods are not as straightforward or ubiquitous for epidemiologists as traditional regression methods found in standard statistical software, but there are exciting opportunities for interdisciplinary collaboration with deep learning experts, just as epidemiologists have with statisticians, health care providers, urban planners, and other professionals. Despite the novelty of these methods, epidemiologic principles of assessing bias, study design, interpretation, and others still apply when implementing deep learning methods or assessing the findings of studies that have used them.
期刊介绍:
The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research.
It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.