Diagnostic Prediction Model for Tuberculous Meningitis: An Individual Participant Data Meta-Analysis.

IF 1.9 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Anna M Stadelman-Behar, Nicki Tiffin, Jayne Ellis, Fiona V Creswell, Kenneth Ssebambulidde, Edwin Nuwagira, Lauren Richards, Vittoria Lutje, Adriana Hristea, Raluca Elena Jipa, José E Vidal, Renata G S Azevedo, Sérgio Monteiro de Almeida, Gislene Botão Kussen, Keite Nogueira, Felipe Augusto Souza Gualberto, Tatiana Metcalf, Anna Dorothee Heemskerk, Tarek Dendane, Abidi Khalid, Amine Ali Zeggwagh, Kathleen Bateman, Uwe Siebert, Ursula Rochau, Arjan van Laarhoven, Reinout van Crevel, Ahmad Rizal Ganiem, Sofiati Dian, Joseph Jarvis, Joseph Donovan, Thuong Nguyen Thuy Thuong, Guy E Thwaites, Nathan C Bahr, David B Meya, David R Boulware, Tom H Boyles
{"title":"Diagnostic Prediction Model for Tuberculous Meningitis: An Individual Participant Data Meta-Analysis.","authors":"Anna M Stadelman-Behar, Nicki Tiffin, Jayne Ellis, Fiona V Creswell, Kenneth Ssebambulidde, Edwin Nuwagira, Lauren Richards, Vittoria Lutje, Adriana Hristea, Raluca Elena Jipa, José E Vidal, Renata G S Azevedo, Sérgio Monteiro de Almeida, Gislene Botão Kussen, Keite Nogueira, Felipe Augusto Souza Gualberto, Tatiana Metcalf, Anna Dorothee Heemskerk, Tarek Dendane, Abidi Khalid, Amine Ali Zeggwagh, Kathleen Bateman, Uwe Siebert, Ursula Rochau, Arjan van Laarhoven, Reinout van Crevel, Ahmad Rizal Ganiem, Sofiati Dian, Joseph Jarvis, Joseph Donovan, Thuong Nguyen Thuy Thuong, Guy E Thwaites, Nathan C Bahr, David B Meya, David R Boulware, Tom H Boyles","doi":"10.4269/ajtmh.23-0789","DOIUrl":null,"url":null,"abstract":"<p><p>No accurate and rapid diagnostic test exists for tuberculous meningitis (TBM), leading to delayed diagnosis. We leveraged data from multiple studies to improve the predictive performance of diagnostic models across different populations, settings, and subgroups to develop a new predictive tool for TBM diagnosis. We conducted a systematic review to analyze eligible datasets with individual-level participant data (IPD). We imputed missing data and explored three approaches: stepwise logistic regression, classification and regression tree (CART), and random forest regression. We evaluated performance using calibration plots and C-statistics via internal-external cross-validation. We included 3,761 individual participants from 14 studies and nine countries. A total of 1,240 (33%) participants had \"definite\" (30%) or \"probable\" (3%) TBM by case definition. Important predictive variables included cerebrospinal fluid (CSF) glucose, blood glucose, CSF white cell count, CSF differential, cryptococcal antigen, HIV status, and fever presence. Internal validation showed that performance varied considerably between IPD datasets with C-statistic values between 0.60 and 0.89. In external validation, CART performed the worst (C = 0.82), and logistic regression and random forest had the same accuracy (C = 0.91). We developed a mobile app for TBM clinical prediction that accounted for heterogeneity and improved diagnostic performance (https://tbmcalc.github.io/tbmcalc). Further external validation is needed.</p>","PeriodicalId":7752,"journal":{"name":"American Journal of Tropical Medicine and Hygiene","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Tropical Medicine and Hygiene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4269/ajtmh.23-0789","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

No accurate and rapid diagnostic test exists for tuberculous meningitis (TBM), leading to delayed diagnosis. We leveraged data from multiple studies to improve the predictive performance of diagnostic models across different populations, settings, and subgroups to develop a new predictive tool for TBM diagnosis. We conducted a systematic review to analyze eligible datasets with individual-level participant data (IPD). We imputed missing data and explored three approaches: stepwise logistic regression, classification and regression tree (CART), and random forest regression. We evaluated performance using calibration plots and C-statistics via internal-external cross-validation. We included 3,761 individual participants from 14 studies and nine countries. A total of 1,240 (33%) participants had "definite" (30%) or "probable" (3%) TBM by case definition. Important predictive variables included cerebrospinal fluid (CSF) glucose, blood glucose, CSF white cell count, CSF differential, cryptococcal antigen, HIV status, and fever presence. Internal validation showed that performance varied considerably between IPD datasets with C-statistic values between 0.60 and 0.89. In external validation, CART performed the worst (C = 0.82), and logistic regression and random forest had the same accuracy (C = 0.91). We developed a mobile app for TBM clinical prediction that accounted for heterogeneity and improved diagnostic performance (https://tbmcalc.github.io/tbmcalc). Further external validation is needed.

结核性脑膜炎诊断预测模型:个人参与者数据元分析》。
目前还没有针对结核性脑膜炎(TBM)的准确而快速的诊断测试,导致诊断延迟。我们利用多项研究的数据来提高诊断模型在不同人群、环境和亚组中的预测性能,从而开发出一种新的结核性脑膜炎诊断预测工具。我们进行了一次系统性回顾,分析了具有个人水平参与者数据(IPD)的合格数据集。我们对缺失数据进行了归类,并探索了三种方法:逐步逻辑回归、分类和回归树 (CART) 以及随机森林回归。我们通过内部-外部交叉验证,使用校准图和 C 统计量来评估性能。我们纳入了来自 14 项研究和 9 个国家的 3,761 名个体参与者。根据病例定义,共有 1240 人(33%)患有 "明确"(30%)或 "可能"(3%)的 TBM。重要的预测变量包括脑脊液(CSF)葡萄糖、血糖、CSF 白细胞计数、CSF 差值、隐球菌抗原、HIV 感染状况和发热情况。内部验证显示,IPD 数据集之间的性能差异很大,C 统计量值介于 0.60 和 0.89 之间。在外部验证中,CART 的表现最差(C = 0.82),逻辑回归和随机森林的准确率相同(C = 0.91)。我们开发了一种用于 TBM 临床预测的移动应用程序,它考虑了异质性并提高了诊断性能 (https://tbmcalc.github.io/tbmcalc)。还需要进一步的外部验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Tropical Medicine and Hygiene
American Journal of Tropical Medicine and Hygiene 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.20
自引率
3.00%
发文量
508
审稿时长
3 months
期刊介绍: The American Journal of Tropical Medicine and Hygiene, established in 1921, is published monthly by the American Society of Tropical Medicine and Hygiene. It is among the top-ranked tropical medicine journals in the world publishing original scientific articles and the latest science covering new research with an emphasis on population, clinical and laboratory science and the application of technology in the fields of tropical medicine, parasitology, immunology, infectious diseases, epidemiology, basic and molecular biology, virology and international medicine. The Journal publishes unsolicited peer-reviewed manuscripts, review articles, short reports, images in Clinical Tropical Medicine, case studies, reports on the efficacy of new drugs and methods of treatment, prevention and control methodologies,new testing methods and equipment, book reports and Letters to the Editor. Topics range from applied epidemiology in such relevant areas as AIDS to the molecular biology of vaccine development. The Journal is of interest to epidemiologists, parasitologists, virologists, clinicians, entomologists and public health officials who are concerned with health issues of the tropics, developing nations and emerging infectious diseases. Major granting institutions including philanthropic and governmental institutions active in the public health field, and medical and scientific libraries throughout the world purchase the Journal. Two or more supplements to the Journal on topics of special interest are published annually. These supplements represent comprehensive and multidisciplinary discussions of issues of concern to tropical disease specialists and health issues of developing countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信