Rift to Post-Rift Tectonostratigraphy of the Sverdrup Basin in Relation to Onset of the High Arctic Large Igneous Province (HALIP) in the Early Cretaceous, Arctic Canada
{"title":"Rift to Post-Rift Tectonostratigraphy of the Sverdrup Basin in Relation to Onset of the High Arctic Large Igneous Province (HALIP) in the Early Cretaceous, Arctic Canada","authors":"T. Hadlari","doi":"10.1029/2023GC011411","DOIUrl":null,"url":null,"abstract":"<p>A summary of the Jurassic-Cretaceous rift to breakup tectonostratigraphy of the onshore Sverdrup Basin is correlated to the offshore Amerasia Basin in order to reconstruct a tectonic setting for the High Arctic Large Igneous Province (HALIP). The rift climax from the Canadian rifted margin is correlated with hyper-extension of the continent-ocean-transition zone. Hyper-extension of the continental lithosphere can accommodate plate motions of Arctic Alaska-Chukotka away from the Canadian Arctic Islands and Lomonosov Ridge between ∼155 Ma and 135–133 Ma. After lithospheric breakup at ∼135–133 Ma, correlation of the post-rift stage to the seafloor spreading anomalies M10n to M4n that are associated with oceanic crustal domains can accommodate plate motions from 135–133 Ma to 128 Ma. The uncertainties associated with the earliest magmas of HALIP overlap with the uncertainties on the timing of the latest seafloor spreading. The first main pulse of HALIP in the Aptian at 124–120 Ma post-dates seafloor spreading and so HALIP was emplaced in a tectonic setting that closely resembles the present state of the south and eastern Amerasia Basin. At the paleogeographic center of the HALIP, the Alpha Ridge complex is consistent with the magmatic character and history of similar Cretaceous oceanic plateau in terms of volume and duration.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GC011411","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GC011411","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A summary of the Jurassic-Cretaceous rift to breakup tectonostratigraphy of the onshore Sverdrup Basin is correlated to the offshore Amerasia Basin in order to reconstruct a tectonic setting for the High Arctic Large Igneous Province (HALIP). The rift climax from the Canadian rifted margin is correlated with hyper-extension of the continent-ocean-transition zone. Hyper-extension of the continental lithosphere can accommodate plate motions of Arctic Alaska-Chukotka away from the Canadian Arctic Islands and Lomonosov Ridge between ∼155 Ma and 135–133 Ma. After lithospheric breakup at ∼135–133 Ma, correlation of the post-rift stage to the seafloor spreading anomalies M10n to M4n that are associated with oceanic crustal domains can accommodate plate motions from 135–133 Ma to 128 Ma. The uncertainties associated with the earliest magmas of HALIP overlap with the uncertainties on the timing of the latest seafloor spreading. The first main pulse of HALIP in the Aptian at 124–120 Ma post-dates seafloor spreading and so HALIP was emplaced in a tectonic setting that closely resembles the present state of the south and eastern Amerasia Basin. At the paleogeographic center of the HALIP, the Alpha Ridge complex is consistent with the magmatic character and history of similar Cretaceous oceanic plateau in terms of volume and duration.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.