{"title":"Photovoltaics Literature Survey (No. 192)","authors":"Ziv Hameiri","doi":"10.1002/pip.3830","DOIUrl":null,"url":null,"abstract":"<p>Martinez-Szewczyk MW, DiGregorio SJ, Hildreth O, et al <b>Reactive silver inks: A path to solar cells with 82% less silver.</b> <i>Energy and Environmental Science</i> 2024; <b>17</b>(9): 3218–3227.</p><p>Jordan DC, Hayden SC, Haegel NM, et al <b>Nanoscale science for terawatt/gigaton scale performance of clean energy technologies.</b> <i>Joule</i> 2024; <b>8</b>(2): 272–279.</p><p>Lobo N, Matt GJ, Osvet A, et al <b>Mitigation of carrier trapping effects on carrier lifetime measurements with continuous-wave laser illumination for Pb-based metal halide perovskite materials.</b> <i>Journal of Applied Physics</i> 2024; <b>135</b>(7): 074905.</p><p>Chojniak D, Schachtner M, Reichmuth SK, et al <b>A precise method for the spectral adjustment of LED and multi-light source solar simulators.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(6): 372–389.</p><p>Goodfriend W, Pieters EB, Tsvetelina M, et al <b>Development and improvement of a transient temperature model of PV modules: Concept of trailing data.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(6): 399–405.</p><p>Lin H, Wang G, Su Q, et al <b>Unveiling the mechanism of attaining high fill factor in silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(6): 359–371.</p><p>García G, Aparcedo A, Nayak GK, et al <b>Generalized deep learning model for photovoltaic module segmentation from satellite and aerial imagery.</b> <i>Solar Energy</i> 2024; <b>274</b>: 112539.</p><p>Huang Q, Wang Y, Hu X, et al <b>Effects of localized tensile stress on GaAs solar cells revealed by absolute electroluminescence imaging and distributed circuit modeling.</b> <i>Solar Energy</i> 2024; <b>274</b>: 112541.</p><p>Le TT, Yang ZS, Liang WS, et al <b>Gettering of iron by aluminum oxide thin films on silicon wafers: Kinetics and mechanisms.</b> <i>Journal of Applied Physics</i> 2024; <b>135</b>(6): 063102.</p><p>Zhou JK, Su XL, Zhang BK, et al <b>Ultrafast laser-annealing of hydrogenated amorphous silicon in tunnel oxide passivated contacts for high-efficiency n-type silicon solar cells.</b> <i>Materials Today Energy</i> 2024; <b>42</b>: 101559.</p><p>Yu HL, Liu W, Du HJ, et al <b>Low-temperature fabrication of boron-doped amorphous silicon passivating contact as a local selective emitter for high-efficiency n-type TOPCon solar cells.</b> <i>Nano Energy</i> 2024; <b>125</b>: 109556.</p><p>Qian C, Bai Y, Ye H, et al <b>Flexible silicon heterojunction solar cells and modules with structured front-surface light management.</b> <i>Solar Energy</i> 2024; <b>274</b>: 112585.</p><p>Bektaş G, Aslan S, Keçeci AE, et al <b>Influence of boron doping profile on emitter and metal contact recombination for n-PERT silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>272</b>: 112886.</p><p>Wang J, Phang SP, Truong TN, et al <b>Inkjet-printed boron-doped poly-Si/SiO</b><sub><b>x</b></sub> <b>passivating contacts.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>272</b>: 112928.</p><p>Weber J, Kniffki L, Gutmann L, et al <b>Investigating the impact of edge passivation on shingle solar modules.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>271</b>: 112876.</p><p>Yuan Y, Chen Z, Peng H, et al <b>Study on the process of hydrogen-doped indium oxide for silicon heterojunction solar cell mass production.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>271</b>: 112836.</p><p>Zheng J, Xue C, Wang G, et al <b>Efficient flexible monolithic perovskite-CIGS tandem solar cell on conductive steel substrate.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1545–1547.</p><p>Chen B, Cui M, Wang X, et al <b>Edge passivation: Considerable improvement in photovoltaic performance of perovskite/silicon tandem solar cells.</b> <i>Applied Physics Letters</i> 2024; <b>124</b>(20): 203502.</p><p>Kikelj M, Senaud LL, Geissbühler J, et al <b>Do all good things really come in threes? The true potential of 3-terminal perovskite-silicon tandem solar cell strings.</b> <i>Joule</i> 2024; <b>8</b>(3): 852–871.</p><p>Hsieh CH, Huang JY, Wu YR. <b>Analysis of two-terminal perovskite/silicon tandem solar cells with differing texture structure, perovskite carrier lifetime, and tunneling junction quality.</b> <i>Journal of Applied Physics</i> 2024; <b>135</b>(11): 115002.</p><p>Tan S, Li C, Peng C, et al <b>Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 4136.</p><p>Zhou J, Fu SQ, Zhou S, et al <b>Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2324.</p><p>Gao H, Xiao K, Lin RX, et al <b>Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules.</b> <i>Science</i> 2024; <b>383</b>(6685): 855–859.</p><p>Song H, Lee S-W, Kang Y, et al <b>Maximizing efficiency: Numerical modeling and optimization of 2-terminal perovskite/silicon tandem devices with different bottom cell structures.</b> <i>Solar Energy</i> 2024; <b>273</b>: 112548.</p><p>Mondal S, Jain A, Maity S. <b>Exploring the potential of tin-based perovskite-silicon tandem solar cells through numerical analysis: A pathway to sustainable energy innovation.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>271</b>: 112869.</p><p>Nguyen DC, Asada T, Raifuku I, et al <b>Analysis and selection of optimal perovskite/silicon tandem configuration for building integrated photovoltaics based on their annual outdoor energy yield predicted by machine learning.</b> <i>Solar RRL</i> 2024; <b>8</b>(9): 2400072.</p><p>Ahmadpour M, Ahmad M, Prete M, et al <b>Tuning surface defect states in sputtered titanium oxide electron transport layers for enhanced stability of organic photovoltaics.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(13): 16580–16,588.</p><p>Bai YQ, Hong L, Dou YJ, et al <b>C-Shape or S-Shape? The molecular geometry control of fused-ring nonfullerene acceptors for lower energy loss in organic solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1786–1795.</p><p>Wang Y, Zhang S, Wang J, et al <b>Optimizing phase separation and vertical distribution via molecular design and ternary strategy for organic solar cells with 19.5% efficiency.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(5): 2420–2427.</p><p>Guo CH, Sun YD, Wang L, et al <b>Light-induced quinone conformation of polymer donors toward 19.9% efficiency organic solar cells.</b> <i>Energy and Environmental Science</i> 2024; <b>17</b>(7): 2492–2499.</p><p>Fan B, Gao H, Li Y, et al <b>Integration of polyoxometalate clusters with self-assembled monolayer for efficient and robust organic solar cells.</b> <i>Joule</i> 2024; <b>8</b>(5): 1443–1,456.</p><p>Liu KR, Jiang YY, Ran GL, et al <b>19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors.</b> <i>Joule</i> 2024; <b>8</b>(3): 835–851.</p><p>Zhang Y, Deng WY, Petoukhoff CE, et al <b>Achieving 19.4% organic solar cell via an in situ formation of p-i-n structure with built-in interpenetrating network.</b> <i>Joule</i> 2024; <b>8</b>(2): 509–526.</p><p>Xiao JY, Ren MR, Zhang GC, et al <b>Functionalized nickel oxide as a hole transport layer for organic solar cells with simultaneous enhancement of efficiency and stability.</b> <i>Journal of Materials Chemistry C</i> 2024; <b>12</b>(15): 5623–5,630.</p><p>Ghosh P, Alvertis AM, Chowdhury R, et al <b>Decoupling excitons from high-frequency vibrations in organic molecules.</b> <i>Nature</i> 2024; <b>629</b>(8011): 355.</p><p>Cai GL, Li YH, Fu Y, et al <b>Deuteration-enhanced neutron contrasts to probe amorphous domain sizes in organic photovoltaic bulk heterojunction films.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2784.</p><p>Fu JH, Yang QG, Huang PH, et al <b>Rational molecular and device design enables organic solar cells approaching 20% efficiency.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1830.</p><p>Gao W, Ma RJ, Dela Pena TA, et al <b>Efficient all-small-molecule organic solar cells processed with non-halogen solvent.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1946.</p><p>Huang JF, Chen TY, Mei L, et al <b>On the role of asymmetric molecular geometry in high-performance organic solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 3287.</p><p>Wu HB, Lu H, Li YG, et al <b>Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2693.</p><p>Wu YL, Yuan Y, Sorbelli D, et al <b>Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2170.</p><p>Ramoroka ME, Yussuf ST, Nwambaekwe KC, et al <b>Advances in organic photovoltaic cells: Fine-tuning of the photovoltaic processes.</b> <i>Solar RRL</i> 2024; <b>8</b>(7): 2300982.</p><p>Nguyen D, Hoang V, Ngo PH, et al <b>Urea-acetamide-based deep eutectic compound as novel, eco-friendly additives in stable and efficient dye-sensitized solar cells: A performance and electrochemical study.</b> <i>Electrochimica Acta</i> 2024; <b>487</b>: 144156.</p><p>Yolthida K, Long DX, Ryu I, et al <b>Highly transparent and efficient Pt/CeO</b><sub><b>x</b></sub> <b>counter electrodes for bifacial dye-sensitized solar cells.</b> <i>Electrochimica Acta</i> 2024; <b>487</b>: 144113.</p><p>Rahmatian M, Sayyaadi H, Ameri M. <b>Indoor photovoltaics: A numerical model of dye-sensitized solar cells based on indoor illumination for the Internet of Things applications.</b> <i>Energy Conversion and Management: X</i> 2024; <b>22</b>: 100606.</p><p>Rao AA, Upadhyay S, Narendhiran S, et al <b>Lignite-derived nanocarbon as surface passivator and cosensitizer in dye-sensitized solar cell.</b> <i>Materials Today Energy</i> 2024; <b>41</b>: 101539.</p><p>Sasikumar R, Thirumalaisamy S, Kim B, et al <b>Dye-sensitized solar cells: Insights and research divergence towards alternatives.</b> <i>Renewable and Sustainable Energy Reviews</i> 2024; <b>199</b>: 114549.</p><p>Dai ZH, You S, Chakraborty D, et al <b>Connecting interfacial mechanical adhesion, efficiency, and operational stability in high performance inverted perovskite solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1880–1887.</p><p>Kouroudis I, Tanko KT, Karimipour M, et al <b>Artificial intelligence-based, wavelet-aided prediction of long-term outdoor performance of perovskite solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1581–1586.</p><p>Le ZK, Liu A, Reo YJ, et al <b>Ion migration in tin-halide perovskites.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1639–1644.</p><p>Lorusso A, Masi S, Triolo C, et al <b>A rational approach to improve the overall performances of semitransparent perovskite solar cells by electrode optical management.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1923–1931.</p><p>Rana TR, Abbas M, Schwartz E, et al <b>Scalable passivation strategies to improve efficiency of slot die-coated perovskite solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1888–1894.</p><p>Sui YJ, Zhou WC, Khan D, et al <b>Understanding the role of crown ether functionalization in inverted perovskite solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1518–1526.</p><p>Zhou Y, Wong EL, Mróz W, et al <b>Role of trapped carriers dynamics in operating lead halide wide-bandgap perovskite solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1666–1673.</p><p>Li Y, Wang YH, Xu ZC, et al <b>Key roles of interfaces in inverted metal-halide perovskite solar cells.</b> <i>Acs Nano</i> 2024; <b>18</b>(16): 10688–10,725.</p><p>Bao HY, Wang SR, Liu HL, et al <b>Columnar liquid crystal enables in-situ dispersing of excess PbI</b><sub><b>2</b></sub> <b>crystals for efficient and stable perovskite solar cells.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>(8): 2303166.</p><p>Zhang YL, Yu RN, Li MH, et al <b>Amphoteric ion bridged buried interface for efficient and stable inverted perovskite solar cells.</b> <i>Advanced Materials</i> 2024; <b>36</b>(1): 2310203.</p><p>Dipta SS, Rahim MA, Uddin A. <b>Encapsulating perovskite solar cells for long-term stability and prevention of lead toxicity.</b> <i>Applied Physics Reviews</i> 2024; <b>11</b>(2): 021301.</p><p>Zhu LZ, Xu SD, Liu GZ, et al <b>Engineering the passivation routes of perovskite films towards high performance solar cells.</b> <i>Chemical Science</i> 2024; <b>15</b>(15): 5642–5652.</p><p>Che ZG, Zhang LM, Shang JC, et al <b>Low-damage hydrogen-doped transparent electrodes towards semitransparent perovskite photovoltaics.</b> <i>Nano Energy</i> 2024; <b>124</b>: 109486.</p><p>Jin MQ, Chen C, Li FM, et al <b>A nanomaterial-regulated oxidation of hole transporting layer for highly stable and efficient perovskite solar cells.</b> <i>Nano Energy</i> 2024; <b>123</b>: 109438.</p><p>Cheng Q, You S, Zhang W, et al <b>Single crystal seed induced epitaxial growth stabilizes α-FAPbI</b><sub><b>3</b></sub> <b>in perovskite solar cells.</b> <i>Nano Letters</i> 2024; <b>24</b>(17): 5308–5316.</p><p>Wang B, Liu FZ, Feng FX, et al <b>Ruddlesden-popper perovskite nanocrystals as interface modification layer for efficient perovskite solar cells.</b> <i>Nano Letters</i> 2024; <b>24</b>(15): 4512–4520.</p><p>Cai SH, Li ZP, Zhang YL, et al <b>Intragrain impurity annihilation for highly efficient and stable perovskite solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2329.</p><p>Liang YH, Li F, Cui XY, et al <b>Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1707.</p><p>Luo JS, Liu BW, Yin HM, et al <b>Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2002.</p><p>Parvazian E, Watson T. <b>The roll-to-roll revolution to tackle the industrial leap for perovskite solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 3883.</p><p>Weerasinghe HC, Macadam N, Kim JE, et al <b>The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1656.</p><p>Zhang J, Hu XG, Ji KY, et al <b>High-performance bifacial perovskite solar cells enabled by single-walled carbon nanotubes.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2245.</p><p>Park SW, He M, Jang JS, et al <b>Facile approach for metallic precursor engineering for efficient kesterite thin-film solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(13): 16328–16339.</p><p>Sartor BE, Zhang T, Muzzillo CP, et al <b>Hierarchical transparent back contacts for bifacial CdTe PV.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(4): 1617–1623.</p><p>Xu LJ, Hu H, Ji J, et al <b>Hybrid energy saving performance of translucent CdTe photovoltaic window on small ship under sailing condition.</b> <i>Energy</i> 2024; <b>295</b>: 131070.</p><p>Nagaoka A, Swain SK, Munshi AH. <b>Review on group-V doping in CdTe for photovoltaic application.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(3): 397–413.</p><p>Li Y, Chen X, Wang R, et al <b>Defect-level trap optimization in Cu</b><sub><b>2</b></sub><b>ZnSn(S,Se)</b><sub><b>4</b></sub> <b>photovoltaic materials via Sb</b><sup><b>3+</b></sup><b>-doping for over 13% efficiency solar cells.</b> <i>Journal of Materials Chemistry A</i> 2024; <b>12</b>(17): 10260–10268.</p><p>Kaur A, Goswami T, Babu KJ, et al <b>Ultrafast electron and hole transfer and efficient charge separation in a Sb</b><sub><b>2</b></sub><b>Se</b><sub><b>3</b></sub><b>/CdS thin film p-n heterojunction.</b> <i>Journal of Physical Chemistry Letters</i> 2024; <b>15</b>(13): 3541–3548.</p><p>Xu CY, Li QL, Song QG, et al <b>Analyzing the synergistic effect of Ag and Ge co-incorporation on Cu</b><sub><b>2</b></sub><b>ZnSnSe</b><sub><b>4</b></sub> <b>thin-film solar cells.</b> <i>Materials Today Energy</i> 2024; <b>40</b>: 101518.</p><p>Ma J, Liu Y, Yao Y, et al <b>Suppressing interface recombination via element diffusion regulation towards high-efficiency Cd-free Cu(In,Ga)Se</b><sub><b>2</b></sub> <b>solar cells.</b> <i>Nano Energy</i> 2024; <b>126</b>: 109641.</p><p>Akbari M, Kashani FD, Mirkazemi SM. <b>Designing novel plasmonic architectures for highly efficient CIGS solar cells.</b> <i>Solar Energy</i> 2024; <b>274</b>: 112589.</p><p>Kim H, Cias SP. <b>Effect of oxide diffusion barrier and substrate on the reliability of stainless-steel-based CIGS solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>272</b>: 112888.</p><p>Siqin L, Xin W, Liu R, et al <b>Cu</b><sub><b>2</b></sub><b>ZnSn(S,Se)</b><sub><b>4</b></sub> <b>solar cells with over 10% power conversion efficiency enabled by dual passivation strategy.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>272</b>: 112880.</p><p>Violas AF, Oliveira AJN, Fernandes PA, et al <b>CIGS bifacial solar cells with novel rear architectures: Simulation point of view and the creation of a digital twin.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>272</b>: 112899.</p><p>Kern S, Yi G, Büttner P, et al <b>Monolithic two-terminal tandem solar cells using Sb</b><sub><b>2</b></sub><b>S</b><sub><b>3</b></sub> <b>and solution-processed PbS quantum dots achieving an open-circuit potential beyond 1.1 V.</b> <i>Acs Applied Materials and Interfaces</i> 2024; <b>16</b>(11): 13903–13913.</p><p>Wang Y, Hu HC, Ran X, et al <b>Electrode engineering of colloidal quantum dot photodetectors using a self-assembled island-like LiF interfacial layer.</b> <i>Acs Photonics</i> 2024; <b>11</b>(4): 1734–1742.</p><p>Zhang L, Wang SQ, Shi Y, et al <b>Organic hole transport materials for high performance PbS quantum dot solar cells.</b> <i>Chemical Communications</i> 2024; <b>60</b>(40): 5294–5297.</p><p>Cardoso A, Jurado-Rodríguez D, López A, et al <b>Automated detection and tracking of photovoltaic modules from 3D remote sensing data.</b> <i>Applied Energy</i> 2024; <b>367</b>: 123242.</p><p>Keddouda A, Ihaddadene R, Boukhari A, et al <b>Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation.</b> <i>Applied Energy</i> 2024; <b>363</b>: 123064.</p><p>Wang XY, Ma WP. <b>A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting.</b> <i>Energy</i> 2024; <b>295</b>: 131071.</p><p>Zhao Q, Li PC, Zhang HC. <b>Dually boosting the performance of photovoltaic module via integrating elastocaloric cooler.</b> <i>Energy</i> 2024; <b>295</b>: 131025.</p><p>Di Giovanni G, Rotilio M, Giusti L, et al <b>Exploiting building information modeling and machine learning for optimizing rooftop photovoltaic systems.</b> <i>Energy and Buildings</i> 2024; <b>313</b>: 114250.</p><p>Ni HZ, Wang DY, Zhao WZ, et al <b>Enhancing rooftop solar energy potential evaluation in high-density cities: A deep learning and GIS based approach.</b> <i>Energy and Buildings</i> 2024; <b>309</b>: 113743.</p><p>de Souza Silva JL, Mahmoudi E, Carvalho RRM, et al <b>Classification of anomalies in photovoltaic systems using supervised machine learning techniques and real data.</b> <i>Energy Reports</i> 2024; <b>11</b>: 4642–4656.</p><p>Javaid A, Shafi I, Khalil IU, et al <b>Enhancing photovoltaic systems using Gaussian process regression for parameter identification and fault detection.</b> <i>Energy Reports</i> 2024; <b>11</b>: 4485–4499.</p><p>Kong LG, Wang B, Fan DJ, et al <b>Optimize photovoltaic MPPT with improved snake algorithm.</b> <i>Energy Reports</i> 2024; <b>11</b>: 5033–5045.</p><p>Sridharan NV, Vaithiyanathan S, Aghaei M. <b>Voting based ensemble for detecting visual faults in photovoltaic modules using AlexNet features.</b> <i>Energy Reports</i> 2024; <b>11</b>: 3889–3901.</p><p>Ferkous K, Guermoui M, Menakh S, et al <b>A novel learning approach for short-term photovoltaic power forecasting - A review and case studies.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>133</b>: 108502.</p><p>Saadaoui D, Elyaqouti M, Assalaou K, et al <b>A hybrid optimization algorithm to identify unknown parameters of photovoltaic models under varying operating conditions.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>133</b>: 108544.</p><p>Mahmoud Y. <b>Novel modeling framework for PV faults under partial shading.</b> <i>IEEE Transactions on Power Electronics</i> 2024; <b>39</b>(4): 4781–4791.</p><p>Liu JX, Zang HX, Ding T, et al <b>Sky-image-derived deep decomposition for ultra-short-term photovoltaic power forecasting.</b> <i>IEEE Transactions on Sustainable Energy</i> 2024; <b>15</b>(2): 871–883.</p><p>Lee S, Lee KD, Bae S, et al <b>Prevention of potential-induced degradation using a moisture barrier in crystalline silicon photovoltaic modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(6): 390–398.</p><p>Ganesan K, Winston DP, Sugumar S, et al <b>Performance investigation of n-type PERT bifacial solar photovoltaic module installed at different elevations.</b> <i>Renewable Energy</i> 2024; <b>227</b>: 120526.</p><p>Zhao W, Lv Y, Dong Z, et al <b>Effect of self-cleaning superhydrophobic coating on dust deposition and performance of PV modules.</b> <i>Renewable Energy</i> 2024; <b>227</b>: 120576.</p><p>Quan H, Ge Y, Liu B, et al <b>A deep-learning algorithm with two-stage training for solar forecast post-processing.</b> <i>Solar Energy</i> 2024; <b>273</b>: 112504.</p><p>Berg K, Hernandez-Matheus A, Aragüés-Peñalba M, et al <b>Load configuration impact on energy community and distribution grid: Quantifying costs, emissions and grid exchange.</b> <i>Applied Energy</i> 2024; <b>363</b>: 123060.</p><p>Cuppari RI, Branscomb A, Graham M, et al <b>Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale.</b> <i>Applied Energy</i> 2024; <b>362</b>: 122970.</p><p>Kanakadhurga D, Prabaharan N. <b>Smart home energy management using demand response with uncertainty analysis of electric vehicle in the presence of renewable energy sources.</b> <i>Applied Energy</i> 2024; <b>364</b>: 123062.</p><p>Munguba CFL, Leite GNP, Ochoa AAV, et al <b>Enhancing cost-efficiency in achieving near-zero energy performance through integrated photovoltaic retrofit solutions.</b> <i>Applied Energy</i> 2024; <b>367</b>: 123307.</p><p>Li L, Wang S, Wu JQ, et al <b>Exploring the efficacy of renewable energy support policies in uncertain environments: A real.</b> <i>Energy Economics</i> 2024; <b>132</b>: 107467.</p><p>Waidelich P, Steffen B. <b>Renewable energy financing by state investment banks: Evidence from OECD countries.</b> <i>Energy Economics</i> 2024; <b>132</b>: 107455.</p><p>Koster G, van Sark W, Ricker B. <b>Solar potential for social benefit: Maps to sustainably address energy poverty utilizing open spatial data in data poor settings.</b> <i>Energy for Sustainable Development</i> 2024; <b>80</b>: 101453.</p><p>Benalcazar P, Kalka M, Kamiński J. <b>From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems.</b> <i>Energy Policy</i> 2024; <b>191</b>: 114167.</p><p>Prol JL, Paul A. <b>Profitability landscapes for competitive photovoltaic self-consumption.</b> <i>Energy Policy</i> 2024; <b>188</b>: 114084.</p><p>Mueller L, Marcroft TP, von Beck C, et al <b>“First come, first served” or “the more, the merrier”? Organizational dynamics of citizen-led solar initiatives and the presence of photovoltaic installations in Germany.</b> <i>Journal of Cleaner Production</i> 2024; <b>449</b>: 141861.</p><p>Zhao XH, Cai X, Jiang CT, et al <b>The determining mechanism of technology catch-up in China's photovoltaic (PV) industry: Machine learning approaches.</b> <i>Journal of Cleaner Production</i> 2024; <b>450</b>: 142028.</p><p>Shi M, Lu X, Craig MT. <b>Climate change will impact the value and optimal adoption of residential rooftop solar.</b> <i>Nature Climate Change</i> 2024; <b>14</b>(5): 482.</p><p>Chen W, Yang S, Lai JHK. <b>Carbon offset potential of rooftop photovoltaic systems in China.</b> <i>Solar Energy</i> 2024; <b>274</b>: 112557.</p><p>Souza V, Figueiredo AMR, Espejo M. <b>Challenges and strategies for managing end-of-life photovoltaic equipment in Brazil: Learning from international experience.</b> <i>Energy Policy</i> 2024; <b>188</b>: 114091.</p><p>Sah D, Kumar S. <b>Experimental, cost and waste analysis of recycling process for crystalline silicon solar module.</b> <i>Solar Energy</i> 2024; <b>273</b>: 112534.</p><p>Tierno M, Hernández Ruiz J, Taboada S, et al <b>Validation of recycling processes for demetallisation and recrystallisation of silicon solar cells.</b> <i>Solar Energy</i> 2024; <b>274</b>: 112533.</p><p>Wang J, Feng Y, He Y. <b>Insights for China from EU management of recycling end-of-life photovoltaic modules.</b> <i>Solar Energy</i> 2024; <b>273</b>: 112532.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"579-583"},"PeriodicalIF":8.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3830","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3830","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Martinez-Szewczyk MW, DiGregorio SJ, Hildreth O, et al Reactive silver inks: A path to solar cells with 82% less silver.Energy and Environmental Science 2024; 17(9): 3218–3227.
Jordan DC, Hayden SC, Haegel NM, et al Nanoscale science for terawatt/gigaton scale performance of clean energy technologies.Joule 2024; 8(2): 272–279.
Lobo N, Matt GJ, Osvet A, et al Mitigation of carrier trapping effects on carrier lifetime measurements with continuous-wave laser illumination for Pb-based metal halide perovskite materials.Journal of Applied Physics 2024; 135(7): 074905.
Chojniak D, Schachtner M, Reichmuth SK, et al A precise method for the spectral adjustment of LED and multi-light source solar simulators.Progress in Photovoltaics: Research and Applications 2024; 32(6): 372–389.
Goodfriend W, Pieters EB, Tsvetelina M, et al Development and improvement of a transient temperature model of PV modules: Concept of trailing data.Progress in Photovoltaics: Research and Applications 2024; 32(6): 399–405.
Lin H, Wang G, Su Q, et al Unveiling the mechanism of attaining high fill factor in silicon solar cells.Progress in Photovoltaics: Research and Applications 2024; 32(6): 359–371.
García G, Aparcedo A, Nayak GK, et al Generalized deep learning model for photovoltaic module segmentation from satellite and aerial imagery.Solar Energy 2024; 274: 112539.
Huang Q, Wang Y, Hu X, et al Effects of localized tensile stress on GaAs solar cells revealed by absolute electroluminescence imaging and distributed circuit modeling.Solar Energy 2024; 274: 112541.
Le TT, Yang ZS, Liang WS, et al Gettering of iron by aluminum oxide thin films on silicon wafers: Kinetics and mechanisms.Journal of Applied Physics 2024; 135(6): 063102.
Zhou JK, Su XL, Zhang BK, et al Ultrafast laser-annealing of hydrogenated amorphous silicon in tunnel oxide passivated contacts for high-efficiency n-type silicon solar cells.Materials Today Energy 2024; 42: 101559.
Yu HL, Liu W, Du HJ, et al Low-temperature fabrication of boron-doped amorphous silicon passivating contact as a local selective emitter for high-efficiency n-type TOPCon solar cells.Nano Energy 2024; 125: 109556.
Qian C, Bai Y, Ye H, et al Flexible silicon heterojunction solar cells and modules with structured front-surface light management.Solar Energy 2024; 274: 112585.
Bektaş G, Aslan S, Keçeci AE, et al Influence of boron doping profile on emitter and metal contact recombination for n-PERT silicon solar cells.Solar Energy Materials and Solar Cells 2024; 272: 112886.
Wang J, Phang SP, Truong TN, et al Inkjet-printed boron-doped poly-Si/SiOxpassivating contacts.Solar Energy Materials and Solar Cells 2024; 272: 112928.
Weber J, Kniffki L, Gutmann L, et al Investigating the impact of edge passivation on shingle solar modules.Solar Energy Materials and Solar Cells 2024; 271: 112876.
Yuan Y, Chen Z, Peng H, et al Study on the process of hydrogen-doped indium oxide for silicon heterojunction solar cell mass production.Solar Energy Materials and Solar Cells 2024; 271: 112836.
Zheng J, Xue C, Wang G, et al Efficient flexible monolithic perovskite-CIGS tandem solar cell on conductive steel substrate.Acs Energy Letters 2024; 9(4): 1545–1547.
Chen B, Cui M, Wang X, et al Edge passivation: Considerable improvement in photovoltaic performance of perovskite/silicon tandem solar cells.Applied Physics Letters 2024; 124(20): 203502.
Kikelj M, Senaud LL, Geissbühler J, et al Do all good things really come in threes? The true potential of 3-terminal perovskite-silicon tandem solar cell strings.Joule 2024; 8(3): 852–871.
Hsieh CH, Huang JY, Wu YR. Analysis of two-terminal perovskite/silicon tandem solar cells with differing texture structure, perovskite carrier lifetime, and tunneling junction quality.Journal of Applied Physics 2024; 135(11): 115002.
Tan S, Li C, Peng C, et al Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells.Nature Communications 2024; 15(1): 4136.
Zhou J, Fu SQ, Zhou S, et al Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells.Nature Communications 2024; 15(1): 2324.
Gao H, Xiao K, Lin RX, et al Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules.Science 2024; 383(6685): 855–859.
Song H, Lee S-W, Kang Y, et al Maximizing efficiency: Numerical modeling and optimization of 2-terminal perovskite/silicon tandem devices with different bottom cell structures.Solar Energy 2024; 273: 112548.
Mondal S, Jain A, Maity S. Exploring the potential of tin-based perovskite-silicon tandem solar cells through numerical analysis: A pathway to sustainable energy innovation.Solar Energy Materials and Solar Cells 2024; 271: 112869.
Nguyen DC, Asada T, Raifuku I, et al Analysis and selection of optimal perovskite/silicon tandem configuration for building integrated photovoltaics based on their annual outdoor energy yield predicted by machine learning.Solar RRL 2024; 8(9): 2400072.
Ahmadpour M, Ahmad M, Prete M, et al Tuning surface defect states in sputtered titanium oxide electron transport layers for enhanced stability of organic photovoltaics.Acs Applied Materials and Interfaces 2024; 16(13): 16580–16,588.
Bai YQ, Hong L, Dou YJ, et al C-Shape or S-Shape? The molecular geometry control of fused-ring nonfullerene acceptors for lower energy loss in organic solar cells.Acs Energy Letters 2024; 9(4): 1786–1795.
Wang Y, Zhang S, Wang J, et al Optimizing phase separation and vertical distribution via molecular design and ternary strategy for organic solar cells with 19.5% efficiency.Acs Energy Letters 2024; 9(5): 2420–2427.
Guo CH, Sun YD, Wang L, et al Light-induced quinone conformation of polymer donors toward 19.9% efficiency organic solar cells.Energy and Environmental Science 2024; 17(7): 2492–2499.
Fan B, Gao H, Li Y, et al Integration of polyoxometalate clusters with self-assembled monolayer for efficient and robust organic solar cells.Joule 2024; 8(5): 1443–1,456.
Liu KR, Jiang YY, Ran GL, et al 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors.Joule 2024; 8(3): 835–851.
Zhang Y, Deng WY, Petoukhoff CE, et al Achieving 19.4% organic solar cell via an in situ formation of p-i-n structure with built-in interpenetrating network.Joule 2024; 8(2): 509–526.
Xiao JY, Ren MR, Zhang GC, et al Functionalized nickel oxide as a hole transport layer for organic solar cells with simultaneous enhancement of efficiency and stability.Journal of Materials Chemistry C 2024; 12(15): 5623–5,630.
Ghosh P, Alvertis AM, Chowdhury R, et al Decoupling excitons from high-frequency vibrations in organic molecules.Nature 2024; 629(8011): 355.
Cai GL, Li YH, Fu Y, et al Deuteration-enhanced neutron contrasts to probe amorphous domain sizes in organic photovoltaic bulk heterojunction films.Nature Communications 2024; 15(1): 2784.
Fu JH, Yang QG, Huang PH, et al Rational molecular and device design enables organic solar cells approaching 20% efficiency.Nature Communications 2024; 15(1): 1830.
Gao W, Ma RJ, Dela Pena TA, et al Efficient all-small-molecule organic solar cells processed with non-halogen solvent.Nature Communications 2024; 15(1): 1946.
Huang JF, Chen TY, Mei L, et al On the role of asymmetric molecular geometry in high-performance organic solar cells.Nature Communications 2024; 15(1): 3287.
Wu HB, Lu H, Li YG, et al Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells.Nature Communications 2024; 15(1): 2693.
Wu YL, Yuan Y, Sorbelli D, et al Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells.Nature Communications 2024; 15(1): 2170.
Ramoroka ME, Yussuf ST, Nwambaekwe KC, et al Advances in organic photovoltaic cells: Fine-tuning of the photovoltaic processes.Solar RRL 2024; 8(7): 2300982.
Nguyen D, Hoang V, Ngo PH, et al Urea-acetamide-based deep eutectic compound as novel, eco-friendly additives in stable and efficient dye-sensitized solar cells: A performance and electrochemical study.Electrochimica Acta 2024; 487: 144156.
Yolthida K, Long DX, Ryu I, et al Highly transparent and efficient Pt/CeOxcounter electrodes for bifacial dye-sensitized solar cells.Electrochimica Acta 2024; 487: 144113.
Rahmatian M, Sayyaadi H, Ameri M. Indoor photovoltaics: A numerical model of dye-sensitized solar cells based on indoor illumination for the Internet of Things applications.Energy Conversion and Management: X 2024; 22: 100606.
Rao AA, Upadhyay S, Narendhiran S, et al Lignite-derived nanocarbon as surface passivator and cosensitizer in dye-sensitized solar cell.Materials Today Energy 2024; 41: 101539.
Sasikumar R, Thirumalaisamy S, Kim B, et al Dye-sensitized solar cells: Insights and research divergence towards alternatives.Renewable and Sustainable Energy Reviews 2024; 199: 114549.
Dai ZH, You S, Chakraborty D, et al Connecting interfacial mechanical adhesion, efficiency, and operational stability in high performance inverted perovskite solar cells.Acs Energy Letters 2024; 9(4): 1880–1887.
Kouroudis I, Tanko KT, Karimipour M, et al Artificial intelligence-based, wavelet-aided prediction of long-term outdoor performance of perovskite solar cells.Acs Energy Letters 2024; 9(4): 1581–1586.
Le ZK, Liu A, Reo YJ, et al Ion migration in tin-halide perovskites.Acs Energy Letters 2024; 9(4): 1639–1644.
Lorusso A, Masi S, Triolo C, et al A rational approach to improve the overall performances of semitransparent perovskite solar cells by electrode optical management.Acs Energy Letters 2024; 9(4): 1923–1931.
Rana TR, Abbas M, Schwartz E, et al Scalable passivation strategies to improve efficiency of slot die-coated perovskite solar cells.Acs Energy Letters 2024; 9(4): 1888–1894.
Sui YJ, Zhou WC, Khan D, et al Understanding the role of crown ether functionalization in inverted perovskite solar cells.Acs Energy Letters 2024; 9(4): 1518–1526.
Zhou Y, Wong EL, Mróz W, et al Role of trapped carriers dynamics in operating lead halide wide-bandgap perovskite solar cells.Acs Energy Letters 2024; 9(4): 1666–1673.
Li Y, Wang YH, Xu ZC, et al Key roles of interfaces in inverted metal-halide perovskite solar cells.Acs Nano 2024; 18(16): 10688–10,725.
Bao HY, Wang SR, Liu HL, et al Columnar liquid crystal enables in-situ dispersing of excess PbI2crystals for efficient and stable perovskite solar cells.Advanced Energy Materials 2024; 14(8): 2303166.
Zhang YL, Yu RN, Li MH, et al Amphoteric ion bridged buried interface for efficient and stable inverted perovskite solar cells.Advanced Materials 2024; 36(1): 2310203.
Dipta SS, Rahim MA, Uddin A. Encapsulating perovskite solar cells for long-term stability and prevention of lead toxicity.Applied Physics Reviews 2024; 11(2): 021301.
Zhu LZ, Xu SD, Liu GZ, et al Engineering the passivation routes of perovskite films towards high performance solar cells.Chemical Science 2024; 15(15): 5642–5652.
Che ZG, Zhang LM, Shang JC, et al Low-damage hydrogen-doped transparent electrodes towards semitransparent perovskite photovoltaics.Nano Energy 2024; 124: 109486.
Jin MQ, Chen C, Li FM, et al A nanomaterial-regulated oxidation of hole transporting layer for highly stable and efficient perovskite solar cells.Nano Energy 2024; 123: 109438.
Cheng Q, You S, Zhang W, et al Single crystal seed induced epitaxial growth stabilizes α-FAPbI3in perovskite solar cells.Nano Letters 2024; 24(17): 5308–5316.
Wang B, Liu FZ, Feng FX, et al Ruddlesden-popper perovskite nanocrystals as interface modification layer for efficient perovskite solar cells.Nano Letters 2024; 24(15): 4512–4520.
Cai SH, Li ZP, Zhang YL, et al Intragrain impurity annihilation for highly efficient and stable perovskite solar cells.Nature Communications 2024; 15(1): 2329.
Liang YH, Li F, Cui XY, et al Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering.Nature Communications 2024; 15(1): 1707.
Luo JS, Liu BW, Yin HM, et al Polymer-acid-metal quasi-ohmic contact for stable perovskite solar cells beyond a 20,000-hour extrapolated lifetime.Nature Communications 2024; 15(1): 2002.
Parvazian E, Watson T. The roll-to-roll revolution to tackle the industrial leap for perovskite solar cells.Nature Communications 2024; 15(1): 3883.
Weerasinghe HC, Macadam N, Kim JE, et al The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions.Nature Communications 2024; 15(1): 1656.
Zhang J, Hu XG, Ji KY, et al High-performance bifacial perovskite solar cells enabled by single-walled carbon nanotubes.Nature Communications 2024; 15(1): 2245.
Park SW, He M, Jang JS, et al Facile approach for metallic precursor engineering for efficient kesterite thin-film solar cells.Acs Applied Materials and Interfaces 2024; 16(13): 16328–16339.
Sartor BE, Zhang T, Muzzillo CP, et al Hierarchical transparent back contacts for bifacial CdTe PV.Acs Energy Letters 2024; 9(4): 1617–1623.
Xu LJ, Hu H, Ji J, et al Hybrid energy saving performance of translucent CdTe photovoltaic window on small ship under sailing condition.Energy 2024; 295: 131070.
Nagaoka A, Swain SK, Munshi AH. Review on group-V doping in CdTe for photovoltaic application.IEEE Journal of Photovoltaics 2024; 14(3): 397–413.
Li Y, Chen X, Wang R, et al Defect-level trap optimization in Cu2ZnSn(S,Se)4photovoltaic materials via Sb3+-doping for over 13% efficiency solar cells.Journal of Materials Chemistry A 2024; 12(17): 10260–10268.
Kaur A, Goswami T, Babu KJ, et al Ultrafast electron and hole transfer and efficient charge separation in a Sb2Se3/CdS thin film p-n heterojunction.Journal of Physical Chemistry Letters 2024; 15(13): 3541–3548.
Xu CY, Li QL, Song QG, et al Analyzing the synergistic effect of Ag and Ge co-incorporation on Cu2ZnSnSe4thin-film solar cells.Materials Today Energy 2024; 40: 101518.
Ma J, Liu Y, Yao Y, et al Suppressing interface recombination via element diffusion regulation towards high-efficiency Cd-free Cu(In,Ga)Se2solar cells.Nano Energy 2024; 126: 109641.
Akbari M, Kashani FD, Mirkazemi SM. Designing novel plasmonic architectures for highly efficient CIGS solar cells.Solar Energy 2024; 274: 112589.
Kim H, Cias SP. Effect of oxide diffusion barrier and substrate on the reliability of stainless-steel-based CIGS solar cells.Solar Energy Materials and Solar Cells 2024; 272: 112888.
Siqin L, Xin W, Liu R, et al Cu2ZnSn(S,Se)4solar cells with over 10% power conversion efficiency enabled by dual passivation strategy.Solar Energy Materials and Solar Cells 2024; 272: 112880.
Violas AF, Oliveira AJN, Fernandes PA, et al CIGS bifacial solar cells with novel rear architectures: Simulation point of view and the creation of a digital twin.Solar Energy Materials and Solar Cells 2024; 272: 112899.
Kern S, Yi G, Büttner P, et al Monolithic two-terminal tandem solar cells using Sb2S3and solution-processed PbS quantum dots achieving an open-circuit potential beyond 1.1 V.Acs Applied Materials and Interfaces 2024; 16(11): 13903–13913.
Wang Y, Hu HC, Ran X, et al Electrode engineering of colloidal quantum dot photodetectors using a self-assembled island-like LiF interfacial layer.Acs Photonics 2024; 11(4): 1734–1742.
Zhang L, Wang SQ, Shi Y, et al Organic hole transport materials for high performance PbS quantum dot solar cells.Chemical Communications 2024; 60(40): 5294–5297.
Cardoso A, Jurado-Rodríguez D, López A, et al Automated detection and tracking of photovoltaic modules from 3D remote sensing data.Applied Energy 2024; 367: 123242.
Keddouda A, Ihaddadene R, Boukhari A, et al Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation.Applied Energy 2024; 363: 123064.
Wang XY, Ma WP. A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting.Energy 2024; 295: 131071.
Zhao Q, Li PC, Zhang HC. Dually boosting the performance of photovoltaic module via integrating elastocaloric cooler.Energy 2024; 295: 131025.
Di Giovanni G, Rotilio M, Giusti L, et al Exploiting building information modeling and machine learning for optimizing rooftop photovoltaic systems.Energy and Buildings 2024; 313: 114250.
Ni HZ, Wang DY, Zhao WZ, et al Enhancing rooftop solar energy potential evaluation in high-density cities: A deep learning and GIS based approach.Energy and Buildings 2024; 309: 113743.
de Souza Silva JL, Mahmoudi E, Carvalho RRM, et al Classification of anomalies in photovoltaic systems using supervised machine learning techniques and real data.Energy Reports 2024; 11: 4642–4656.
Javaid A, Shafi I, Khalil IU, et al Enhancing photovoltaic systems using Gaussian process regression for parameter identification and fault detection.Energy Reports 2024; 11: 4485–4499.
Kong LG, Wang B, Fan DJ, et al Optimize photovoltaic MPPT with improved snake algorithm.Energy Reports 2024; 11: 5033–5045.
Sridharan NV, Vaithiyanathan S, Aghaei M. Voting based ensemble for detecting visual faults in photovoltaic modules using AlexNet features.Energy Reports 2024; 11: 3889–3901.
Ferkous K, Guermoui M, Menakh S, et al A novel learning approach for short-term photovoltaic power forecasting - A review and case studies.Engineering Applications of Artificial Intelligence 2024; 133: 108502.
Saadaoui D, Elyaqouti M, Assalaou K, et al A hybrid optimization algorithm to identify unknown parameters of photovoltaic models under varying operating conditions.Engineering Applications of Artificial Intelligence 2024; 133: 108544.
Mahmoud Y. Novel modeling framework for PV faults under partial shading.IEEE Transactions on Power Electronics 2024; 39(4): 4781–4791.
Liu JX, Zang HX, Ding T, et al Sky-image-derived deep decomposition for ultra-short-term photovoltaic power forecasting.IEEE Transactions on Sustainable Energy 2024; 15(2): 871–883.
Lee S, Lee KD, Bae S, et al Prevention of potential-induced degradation using a moisture barrier in crystalline silicon photovoltaic modules.Progress in Photovoltaics: Research and Applications 2024; 32(6): 390–398.
Ganesan K, Winston DP, Sugumar S, et al Performance investigation of n-type PERT bifacial solar photovoltaic module installed at different elevations.Renewable Energy 2024; 227: 120526.
Zhao W, Lv Y, Dong Z, et al Effect of self-cleaning superhydrophobic coating on dust deposition and performance of PV modules.Renewable Energy 2024; 227: 120576.
Quan H, Ge Y, Liu B, et al A deep-learning algorithm with two-stage training for solar forecast post-processing.Solar Energy 2024; 273: 112504.
Berg K, Hernandez-Matheus A, Aragüés-Peñalba M, et al Load configuration impact on energy community and distribution grid: Quantifying costs, emissions and grid exchange.Applied Energy 2024; 363: 123060.
Cuppari RI, Branscomb A, Graham M, et al Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale.Applied Energy 2024; 362: 122970.
Kanakadhurga D, Prabaharan N. Smart home energy management using demand response with uncertainty analysis of electric vehicle in the presence of renewable energy sources.Applied Energy 2024; 364: 123062.
Munguba CFL, Leite GNP, Ochoa AAV, et al Enhancing cost-efficiency in achieving near-zero energy performance through integrated photovoltaic retrofit solutions.Applied Energy 2024; 367: 123307.
Li L, Wang S, Wu JQ, et al Exploring the efficacy of renewable energy support policies in uncertain environments: A real.Energy Economics 2024; 132: 107467.
Waidelich P, Steffen B. Renewable energy financing by state investment banks: Evidence from OECD countries.Energy Economics 2024; 132: 107455.
Koster G, van Sark W, Ricker B. Solar potential for social benefit: Maps to sustainably address energy poverty utilizing open spatial data in data poor settings.Energy for Sustainable Development 2024; 80: 101453.
Benalcazar P, Kalka M, Kamiński J. From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems.Energy Policy 2024; 191: 114167.
Prol JL, Paul A. Profitability landscapes for competitive photovoltaic self-consumption.Energy Policy 2024; 188: 114084.
Mueller L, Marcroft TP, von Beck C, et al “First come, first served” or “the more, the merrier”? Organizational dynamics of citizen-led solar initiatives and the presence of photovoltaic installations in Germany.Journal of Cleaner Production 2024; 449: 141861.
Zhao XH, Cai X, Jiang CT, et al The determining mechanism of technology catch-up in China's photovoltaic (PV) industry: Machine learning approaches.Journal of Cleaner Production 2024; 450: 142028.
Shi M, Lu X, Craig MT. Climate change will impact the value and optimal adoption of residential rooftop solar.Nature Climate Change 2024; 14(5): 482.
Chen W, Yang S, Lai JHK. Carbon offset potential of rooftop photovoltaic systems in China.Solar Energy 2024; 274: 112557.
Souza V, Figueiredo AMR, Espejo M. Challenges and strategies for managing end-of-life photovoltaic equipment in Brazil: Learning from international experience.Energy Policy 2024; 188: 114091.
Sah D, Kumar S. Experimental, cost and waste analysis of recycling process for crystalline silicon solar module.Solar Energy 2024; 273: 112534.
Tierno M, Hernández Ruiz J, Taboada S, et al Validation of recycling processes for demetallisation and recrystallisation of silicon solar cells.Solar Energy 2024; 274: 112533.
Wang J, Feng Y, He Y. Insights for China from EU management of recycling end-of-life photovoltaic modules.Solar Energy 2024; 273: 112532.
太阳能的社会效益潜力:在数据匮乏的环境中利用开放空间数据持续解决能源贫困问题的地图。Energy for Sustainable Development 2024; 80: 101453.Benalcazar P, Kalka M, Kamiński J. From consumer to prosumer:基于模型的并网住宅光伏电池系统成本效益分析。能源政策 2024;191:114167.Prol JL、Paul A. 有竞争力的光伏自消费的盈利前景。Energy Policy 2024; 188: 114084.Mueller L, Marcroft TP, von Beck C, et al "先到先得 "还是 "多多益善"?德国公民主导的太阳能倡议的组织动态和光伏装置的存在。Zhao XH, Cai X, Jiang CT, et al The determining mechanism of technology catch-up in China's photovoltaic (PV) industry:机器学习方法。清洁生产期刊 2024; 450: 142028.Shi M, Lu X, Craig MT.气候变化将影响住宅屋顶太阳能的价值和最佳采用率。自然气候变化》,2024 年;14(5):482.Chen W, Yang S, Lai JHK.中国屋顶光伏系统的碳补偿潜力。Solar Energy 2024; 274: 112557.Souza V, Figueiredo AMR, Espejo M. Challenges and strategies for managing end-of-life photovoltaic equipment in Brazil. Learning from international experience:从国际经验中学习。Energy Policy 2024; 188: 114091.Sah D, Kumar S. Experimental, Cost and waste analysis of recycling process for crystalline silicon solar module.太阳能 2024; 273:112534.Tierno M, Hernández Ruiz J, Taboada S, et al Validation of recycling processes for demetallisation and recrystallisation of silicon solar cells.太阳能 2024; 274: 112533.Wang J, Feng Y, He Y. Insights for China from EU management of recycling end-of-life photovoltaic modules.太阳能 2024; 273: 112532:112532.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.