A molecular dynamics investigation of laminar pyrocarbons elasticity up to high-temperatures

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Franck Polewczyk , Paul Lafourcade , Nicolas Pineau , Christophe Denoual , Gérard L. Vignoles , Jean-Marc Leyssale
{"title":"A molecular dynamics investigation of laminar pyrocarbons elasticity up to high-temperatures","authors":"Franck Polewczyk ,&nbsp;Paul Lafourcade ,&nbsp;Nicolas Pineau ,&nbsp;Christophe Denoual ,&nbsp;Gérard L. Vignoles ,&nbsp;Jean-Marc Leyssale","doi":"10.1016/j.cartre.2024.100376","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical properties of anisotropic carbons such as the pyrocarbon (pyC) matrices in C/C composites remain poorly documented, especially at elevated temperatures where these materials find most of their applications. We provide here a comprehensive molecular dynamics investigation of the high temperature – up to 4000 K – elastic behavior of six nanoscale pyC models in the context of fast temperature increases, not allowing for major structural modifications such as graphitization. We show that the structure of the most anisotropic and less disordered carbons, like the rough laminar (RL) pyC, is mostly not affected by annealing at the nanosecond timescale, aside from healing unstable defects like two-coordinated atoms at graphene edges. Conversely, highly disordered and less anisotropic carbons like the smooth laminar (SL) pyC show some significant rearrangements at grain boundaries and the development of some limited microporosity. The elastic constants of all highly anisotropic models moderately decrease with increasing temperature, somehow similarly to what is observed for graphite. Elastic constants of the SL pyC show a stronger decrease at high temperature, due to the decrease in density even though all models retain an important degree of stiffness up to 4000 K.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"16 ","pages":"Article 100376"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000579/pdfft?md5=b6cfe46a2fe84b7f5ba1f94befec5c5b&pid=1-s2.0-S2667056924000579-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical properties of anisotropic carbons such as the pyrocarbon (pyC) matrices in C/C composites remain poorly documented, especially at elevated temperatures where these materials find most of their applications. We provide here a comprehensive molecular dynamics investigation of the high temperature – up to 4000 K – elastic behavior of six nanoscale pyC models in the context of fast temperature increases, not allowing for major structural modifications such as graphitization. We show that the structure of the most anisotropic and less disordered carbons, like the rough laminar (RL) pyC, is mostly not affected by annealing at the nanosecond timescale, aside from healing unstable defects like two-coordinated atoms at graphene edges. Conversely, highly disordered and less anisotropic carbons like the smooth laminar (SL) pyC show some significant rearrangements at grain boundaries and the development of some limited microporosity. The elastic constants of all highly anisotropic models moderately decrease with increasing temperature, somehow similarly to what is observed for graphite. Elastic constants of the SL pyC show a stronger decrease at high temperature, due to the decrease in density even though all models retain an important degree of stiffness up to 4000 K.

Abstract Image

层状碳氢化合物高温弹性的分子动力学研究
各向异性碳(如碳/碳复合材料中的热碳(pyC)基体)的机械特性仍然鲜有记载,尤其是在这些材料应用最广泛的高温环境下。我们在此对六种纳米级 pyC 模型的高温(高达 4000 K)弹性行为进行了全面的分子动力学研究,研究的背景是温度的快速升高,不允许出现石墨化等重大结构变化。我们的研究表明,各向异性最强、无序程度较低的碳,如粗糙层状(RL)pyC,其结构大多不受纳秒级退火的影响,除了石墨烯边缘两配位原子等不稳定缺陷的愈合。相反,像光滑层状(SL)pyC 这样高度无序且各向异性较低的碳则会在晶界处出现一些明显的重排,并形成一些有限的微孔。所有高度各向异性模型的弹性常数都会随着温度的升高而适度降低,这与石墨的情况类似。SL pyC 的弹性常数在高温下的下降幅度更大,这是由于密度的降低,尽管所有模型在 4000 K 以下都保留了很大程度的刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信