Linkages and removable paths avoiding vertices

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiying Du, Yanjia Li, Shijie Xie , Xingxing Yu
{"title":"Linkages and removable paths avoiding vertices","authors":"Xiying Du,&nbsp;Yanjia Li,&nbsp;Shijie Xie ,&nbsp;Xingxing Yu","doi":"10.1016/j.jctb.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <em>G</em> is <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked if, for any distinct vertices <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in <em>G</em>, there exist disjoint connected subgraphs <span><math><mi>A</mi><mo>,</mo><mi>B</mi></math></span> of <em>G</em> such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∈</mo><mi>V</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>V</mi><mo>(</mo><mi>B</mi><mo>)</mo></math></span>. A fundamental result in structural graph theory is the characterization of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>-linked graphs. It appears to be difficult to characterize <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked graphs for <span><math><mi>m</mi><mo>≥</mo><mn>3</mn></math></span>. In this paper, we provide a partial characterization of <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked graphs. This implies that every <span><math><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span>-connected graphs <em>G</em> is <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-linked and for any distinct vertices <span><math><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of <em>G</em>, there is a path <em>P</em> in <em>G</em> between <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and avoiding <span><math><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><mi>G</mi><mo>−</mo><mi>P</mi></math></span> is connected, improving a previous connectivity bound of 10<em>m</em>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000595","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A graph G is (2,m)-linked if, for any distinct vertices a1,,am,b1,b2 in G, there exist disjoint connected subgraphs A,B of G such that a1,,amV(A) and b1,b2V(B). A fundamental result in structural graph theory is the characterization of (2,2)-linked graphs. It appears to be difficult to characterize (2,m)-linked graphs for m3. In this paper, we provide a partial characterization of (2,m)-linked graphs. This implies that every (2m+2)-connected graphs G is (2,m)-linked and for any distinct vertices a1,,am,b1,b2 of G, there is a path P in G between b1 and b2 and avoiding {a1,,am} such that GP is connected, improving a previous connectivity bound of 10m.

避开顶点的连线和可移动路径
如果对于 G 中任何不同的顶点 a1,...,am,b1,b2,存在 G 的互不相交的连通子图 A,B,使得 a1,...,am∈V(A)和 b1,b2∈V(B),则图 G 是 (2,m)-linked 的。结构图理论的一个基本结果是(2,2)连接图的特征描述。要描述 m≥3 的 (2,m) 链接图似乎很难。本文提供了 (2,m) 链接图的部分特征。这意味着每个 (2m+2)-linkected graphs G 都是 (2,m)-linked 的,并且对于 G 的任何不同顶点 a1,...,am,b1,b2,G 中都存在一条路径 P,该路径 P 位于 b1 和 b2 之间,并避开 {a1,...,am},这样 G-P 就是连通的,从而改善了之前 10m 的连通性约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信