{"title":"Transformation pattern of shape-memory NiTi alloy during stress-biased thermal cycling","authors":"Yao Xiao , Dailu Chen , Tianjian Jiang , Dongjie Jiang , Liming Gao , Yichao Tang","doi":"10.1016/j.euromechsol.2024.105393","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the superelastic deformation of NiTi has been documented and analyzed elaborately, its shape-memory behavior during stress-biased thermal cycling has not been thoroughly unveiled. This paper examines the evolution of transformation pattern in NiTi upon thermal cycling over a wide range of biasing stress. For the present shape-memory NiTi, both forward and reverse transformations proceed via the growth of localized deformation band (LDB) under low biasing stress (<span><math><mrow><msub><mi>σ</mi><mtext>bias</mtext></msub></mrow></math></span> ≤ 150 MPa), while LDB only appears during forward transformation and reverse transformation is uniform under high biasing stress (<span><math><mrow><msub><mi>σ</mi><mtext>bias</mtext></msub></mrow></math></span> ≥ 200 MPa). This is the first time that delocalization (conversion of deformation mode from localization to homogeneity) is observed during stress-biased thermal cycling. We clarify that the intrinsic undercooling/overheating of martensitic transformation results in unstable thermomechanical response, and it is the origin of localization in shape-memory NiTi. It is found that transformation-induced plasticity (TRIP), which is dominated by dislocation slip and deformation twining, not only causes irreversibility in the present shape-memory NiTi but also leads to delocalization through stabilization of intrinsic thermomechanical response of reverse transformation.</p></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"107 ","pages":"Article 105393"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824001736","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the superelastic deformation of NiTi has been documented and analyzed elaborately, its shape-memory behavior during stress-biased thermal cycling has not been thoroughly unveiled. This paper examines the evolution of transformation pattern in NiTi upon thermal cycling over a wide range of biasing stress. For the present shape-memory NiTi, both forward and reverse transformations proceed via the growth of localized deformation band (LDB) under low biasing stress ( ≤ 150 MPa), while LDB only appears during forward transformation and reverse transformation is uniform under high biasing stress ( ≥ 200 MPa). This is the first time that delocalization (conversion of deformation mode from localization to homogeneity) is observed during stress-biased thermal cycling. We clarify that the intrinsic undercooling/overheating of martensitic transformation results in unstable thermomechanical response, and it is the origin of localization in shape-memory NiTi. It is found that transformation-induced plasticity (TRIP), which is dominated by dislocation slip and deformation twining, not only causes irreversibility in the present shape-memory NiTi but also leads to delocalization through stabilization of intrinsic thermomechanical response of reverse transformation.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.