New insights into the influencing mechanism of ultrasonic vibration on interface of Al/Mg bimetal composites by compound casting using simulation calculation and experimental verification
{"title":"New insights into the influencing mechanism of ultrasonic vibration on interface of Al/Mg bimetal composites by compound casting using simulation calculation and experimental verification","authors":"","doi":"10.1016/j.compositesb.2024.111726","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the numerical simulation of acoustic pressure distribution in ultrasonic vibration-assisted compound casting of Al/Mg bimetal composites was conducted. Relevant experimental verification was also performed to understand the influence of ultrasonic vibration treatment (UVT) on the interfacial microstructures and mechanical properties of the Al/Mg bimetal composites. Results revealed that the acoustic pressure distributions in the AZ91D melt were related to the vibration frequencies. The effective cavitation area at the Al/Mg interface reached the maximum percentage of 95.6 %, with the ultrasonic frequency of 20 kHz. The experimental results found that the Al/Mg interface without UVT was composed of Al–Mg intermetallic compounds (IMCs, i.e., Al<sub>3</sub>Mg<sub>2</sub> and Al<sub>12</sub>Mg<sub>17</sub>) layer and eutectic layer. The oxide film and gas gap were existed between the two layers. The Mg<sub>2</sub>Si particles were gathered at the IMCs layer. The interfacial grains were coarse and their growth was directional. With UVT, the effective cavitation was occurred at the Al/Mg interface. The oxide film was broken, and the gas gap was eliminated. The interfacial microstructures were significantly refined. Due to the accelerated elemental diffusion and solute transfer by UVT, a more homogeneous Al/Mg interface was obtained. The Mg<sub>2</sub>Si particles were refined and formed at the eutectic layer. The microhardness mismatch of the IMCs layer and eutectic layer was decreased by UVT. The shear strength of the Al/Mg bimetal composites with UVT was enhanced to 62.2 MPa, which increased by 62.8 %, compared with that without UVT.</p></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824005389","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the numerical simulation of acoustic pressure distribution in ultrasonic vibration-assisted compound casting of Al/Mg bimetal composites was conducted. Relevant experimental verification was also performed to understand the influence of ultrasonic vibration treatment (UVT) on the interfacial microstructures and mechanical properties of the Al/Mg bimetal composites. Results revealed that the acoustic pressure distributions in the AZ91D melt were related to the vibration frequencies. The effective cavitation area at the Al/Mg interface reached the maximum percentage of 95.6 %, with the ultrasonic frequency of 20 kHz. The experimental results found that the Al/Mg interface without UVT was composed of Al–Mg intermetallic compounds (IMCs, i.e., Al3Mg2 and Al12Mg17) layer and eutectic layer. The oxide film and gas gap were existed between the two layers. The Mg2Si particles were gathered at the IMCs layer. The interfacial grains were coarse and their growth was directional. With UVT, the effective cavitation was occurred at the Al/Mg interface. The oxide film was broken, and the gas gap was eliminated. The interfacial microstructures were significantly refined. Due to the accelerated elemental diffusion and solute transfer by UVT, a more homogeneous Al/Mg interface was obtained. The Mg2Si particles were refined and formed at the eutectic layer. The microhardness mismatch of the IMCs layer and eutectic layer was decreased by UVT. The shear strength of the Al/Mg bimetal composites with UVT was enhanced to 62.2 MPa, which increased by 62.8 %, compared with that without UVT.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.