In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions

IF 2.4 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Krzysztof K. Bojarski , Alexis David , Fabien Lecaille , Sergey A. Samsonov
{"title":"In silico approaches for better understanding cysteine cathepsin-glycosaminoglycan interactions","authors":"Krzysztof K. Bojarski ,&nbsp;Alexis David ,&nbsp;Fabien Lecaille ,&nbsp;Sergey A. Samsonov","doi":"10.1016/j.carres.2024.109201","DOIUrl":null,"url":null,"abstract":"<div><p>Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"543 ","pages":"Article 109201"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008621524001800/pdfft?md5=65a3e2ba2fe717908a4a73cc72c3fe61&pid=1-s2.0-S0008621524001800-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524001800","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cysteine cathepsins constitute the largest cathepsin family, with 11 proteases in human that are present primarily within acidic endosomal and lysosomal compartments. They are involved in the turnover of intracellular and extracellular proteins. They are synthesized as inactive procathepsins that are converted to mature active forms. Cathepsins play important roles in physiological and pathological processes and, therefore, receive increasing attention as potential therapeutic targets. Their maturation and activity can be regulated by glycosaminoglycans (GAGs), long linear negatively charged polysaccharides composed of recurring dimeric units. In this review, we summarize recent computational progress in the field of (pro)cathepsin-GAG complexes analyses.

Abstract Image

更好地理解半胱氨酸螯合蛋白-氨基糖相互作用的硅学方法
半胱氨酸酪蛋白构成了最大的酪蛋白家族,在人类中有 11 种蛋白酶,主要存在于酸性内体和溶酶体内。它们参与细胞内和细胞外蛋白质的周转。它们合成为无活性的前胰蛋白酶,然后转化为成熟的活性形式。胰凝乳蛋白在生理和病理过程中发挥着重要作用,因此作为潜在的治疗靶点受到越来越多的关注。它们的成熟和活性可受糖胺聚糖(GAGs)的调节,糖胺聚糖是由重复出现的二聚单位组成的带负电荷的长线性多糖。在这篇综述中,我们总结了(原)胰蛋白酶-GAG 复合物分析领域的最新计算进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Research
Carbohydrate Research 化学-生化与分子生物学
CiteScore
5.00
自引率
3.20%
发文量
183
审稿时长
3.6 weeks
期刊介绍: Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects. Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence. Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信