Salt partitioning and transport in polyamide reverse osmosis membranes at ultrahigh pressures

IF 4.9 Q1 ENGINEERING, CHEMICAL
Kevin Pataroque , Jishan Wu , Jinlong He , Hanqing Fan , Subhamoy Mahajan , Kevin Guo , Jason Le , Kay Au , Li Wang , Ying Li , Eric M.V. Hoek , Menachem Elimelech
{"title":"Salt partitioning and transport in polyamide reverse osmosis membranes at ultrahigh pressures","authors":"Kevin Pataroque ,&nbsp;Jishan Wu ,&nbsp;Jinlong He ,&nbsp;Hanqing Fan ,&nbsp;Subhamoy Mahajan ,&nbsp;Kevin Guo ,&nbsp;Jason Le ,&nbsp;Kay Au ,&nbsp;Li Wang ,&nbsp;Ying Li ,&nbsp;Eric M.V. Hoek ,&nbsp;Menachem Elimelech","doi":"10.1016/j.memlet.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding salt and water transport mechanisms in reverse osmosis (RO) under high pressures and salinities is critical to advancing RO-based brine management technologies. In this study, we investigate the dependence of salt permeance and partitioning on feed salinity and applied pressure. Salt partitioning coefficients were determined using a novel high-pressure quartz crystal microbalance (QCM), and salt permeances were collected using a lab-scale high-pressure dead-end cell. Our results show that salt permeance decreases with respect to feed concentration, in contrast to conventional theories for charged RO membranes. We further show salt partitioning coefficients do not change with applied hydrostatic pressure but are dependent on feed salt concentration. We use non-equilibrium molecular dynamics simulations to show that these trends are explained by salinity and pressure-induced changes to the structure of the polyamide layer, namely osmotic deswelling and compaction. Changes in the polyamide layer thickness and pore size alter the frictional interactions of ions, affecting membrane performance at larger salinities and pressures. These results provide new insights on how structure-performance relationships affect salt transport at higher pressures.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"4 2","pages":"Article 100079"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772421224000138/pdfft?md5=826dd12271ae7855aa58311f2c09b7ac&pid=1-s2.0-S2772421224000138-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421224000138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding salt and water transport mechanisms in reverse osmosis (RO) under high pressures and salinities is critical to advancing RO-based brine management technologies. In this study, we investigate the dependence of salt permeance and partitioning on feed salinity and applied pressure. Salt partitioning coefficients were determined using a novel high-pressure quartz crystal microbalance (QCM), and salt permeances were collected using a lab-scale high-pressure dead-end cell. Our results show that salt permeance decreases with respect to feed concentration, in contrast to conventional theories for charged RO membranes. We further show salt partitioning coefficients do not change with applied hydrostatic pressure but are dependent on feed salt concentration. We use non-equilibrium molecular dynamics simulations to show that these trends are explained by salinity and pressure-induced changes to the structure of the polyamide layer, namely osmotic deswelling and compaction. Changes in the polyamide layer thickness and pore size alter the frictional interactions of ions, affecting membrane performance at larger salinities and pressures. These results provide new insights on how structure-performance relationships affect salt transport at higher pressures.

Abstract Image

超高压下聚酰胺反渗透膜中的盐分分配和迁移
了解高压和高盐度条件下反渗透(RO)中盐和水的传输机制对于推进基于反渗透的盐水管理技术至关重要。在这项研究中,我们调查了盐的渗透和分配对进料盐度和应用压力的依赖性。使用新型高压石英晶体微天平 (QCM) 测定了盐分配系数,并使用实验室规模的高压死端池收集了盐渗透率。我们的结果表明,盐的渗透率随进水浓度的降低而降低,这与带电反渗透膜的传统理论相反。我们进一步表明,盐分配系数不会随施加的静水压力而改变,但取决于进料盐浓度。我们使用非平衡分子动力学模拟来说明这些趋势是由盐度和压力引起的聚酰胺层结构变化(即渗透脱气和压实)造成的。聚酰胺层厚度和孔径的变化会改变离子的摩擦相互作用,从而影响膜在较大盐度和压力下的性能。这些结果提供了关于结构-性能关系如何在较高压力下影响盐分传输的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信