Insight into the role of nickel carbide nanoparticles in improving photocatalytic H2 generation over ZnIn2S4 under visible light

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Longfei Wang , Qingru Zeng , Yufeng Gan , Yuezhou Wei , Xinpeng Wang , Deqian Zeng
{"title":"Insight into the role of nickel carbide nanoparticles in improving photocatalytic H2 generation over ZnIn2S4 under visible light","authors":"Longfei Wang ,&nbsp;Qingru Zeng ,&nbsp;Yufeng Gan ,&nbsp;Yuezhou Wei ,&nbsp;Xinpeng Wang ,&nbsp;Deqian Zeng","doi":"10.1016/j.flatc.2024.100711","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc indium sulfide (ZnIn<sub>2</sub>S<sub>4</sub>) is a Cd-free semiconductor with great potential in various photocatalytic applications. However, its rapid photogenerated charge combination poses some challenges. Constructing ZnIn<sub>2</sub>S<sub>4</sub>-based heterojunction photocatalysts to address this has proven an effective solution. In this study, we loaded uniform Ni<sub>3</sub>C nanoparticles as cocatalysts on layered ZnIn<sub>2</sub>S<sub>4</sub> nanostructures to promote photocatalytic H<sub>2</sub> production activity. The optimal 3 % Ni<sub>3</sub>C/ZnIn<sub>2</sub>S<sub>4</sub> exhibited the highest H<sub>2</sub> generation rate of 393 μmol·g<sup>−1</sup>·h<sup>−1</sup>, 4.5 times greater than pure ZnIn<sub>2</sub>S<sub>4</sub>. The enhanced photocatalytic performance was ascribed to the incorporation of metallic Ni<sub>3</sub>C, which provides more catalytically active sites and establishes electron transfer channels at the interfaces, facilitating the photogenerated carrier separation and H<sub>2</sub> production. The photocatalytic mechanism of Ni<sub>3</sub>C/ZnIn<sub>2</sub>S<sub>4</sub> was proposed through experimental measurements and DFT calculations. This study offers a way to develop efficient ZnIn<sub>2</sub>S<sub>4</sub>-based visible-light-driven photocatalysts.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100711"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001053","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc indium sulfide (ZnIn2S4) is a Cd-free semiconductor with great potential in various photocatalytic applications. However, its rapid photogenerated charge combination poses some challenges. Constructing ZnIn2S4-based heterojunction photocatalysts to address this has proven an effective solution. In this study, we loaded uniform Ni3C nanoparticles as cocatalysts on layered ZnIn2S4 nanostructures to promote photocatalytic H2 production activity. The optimal 3 % Ni3C/ZnIn2S4 exhibited the highest H2 generation rate of 393 μmol·g−1·h−1, 4.5 times greater than pure ZnIn2S4. The enhanced photocatalytic performance was ascribed to the incorporation of metallic Ni3C, which provides more catalytically active sites and establishes electron transfer channels at the interfaces, facilitating the photogenerated carrier separation and H2 production. The photocatalytic mechanism of Ni3C/ZnIn2S4 was proposed through experimental measurements and DFT calculations. This study offers a way to develop efficient ZnIn2S4-based visible-light-driven photocatalysts.

Abstract Image

洞察碳化镍纳米颗粒在可见光条件下改善 ZnIn2S4 光催化产生 H2 的作用
硫化锌铟(ZnIn2S4)是一种无镉半导体,在各种光催化应用中具有巨大潜力。然而,其快速的光生电荷结合带来了一些挑战。事实证明,构建基于 ZnIn2S4 的异质结光催化剂是解决这一问题的有效方法。在本研究中,我们在层状 ZnIn2S4 纳米结构上负载了均匀的 Ni3C 纳米颗粒作为协同催化剂,以提高光催化产生 H2 的活性。最佳的 3 % Ni3C/ZnIn2S4 的 H2 生成率高达 393 μmol-g-1-h-1,是纯 ZnIn2S4 的 4.5 倍。光催化性能的提高归因于金属 Ni3C 的加入,它提供了更多的催化活性位点,并在界面上建立了电子传递通道,促进了光生载流子的分离和 H2 的产生。通过实验测量和 DFT 计算,提出了 Ni3C/ZnIn2S4 的光催化机理。这项研究为开发基于 ZnIn2S4 的高效可见光驱动光催化剂提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信