Tianyi Chang, Gregory S Gavelis, Julia M Brown, Ramunas Stepanauskas
{"title":"Genomic representativeness and chimerism in large collections of SAGs and MAGs of marine prokaryoplankton.","authors":"Tianyi Chang, Gregory S Gavelis, Julia M Brown, Ramunas Stepanauskas","doi":"10.1186/s40168-024-01848-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) are the predominant sources of information about the coding potential of uncultured microbial lineages, but their strengths and limitations remain poorly understood. Here, we performed a direct comparison of two previously published collections of thousands of SAGs and MAGs obtained from the same, global environment.</p><p><strong>Results: </strong>We found that SAGs were less prone to chimerism and more accurately reflected the relative abundance and the pangenome content of microbial lineages inhabiting the epipelagic of the tropical and subtropical ocean, as compared to MAGs. SAGs were also better suited to link genome information with taxa discovered through 16S rRNA amplicon analyses. Meanwhile, MAGs had the advantage of more readily recovering genomes of rare lineages.</p><p><strong>Conclusions: </strong>Our analyses revealed the relative strengths and weaknesses of the two most commonly used genome recovery approaches in environmental microbiology. These considerations, as well as the need for better tools for genome quality assessment, should be taken into account when designing studies and interpreting data that involve SAGs or MAGs. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01848-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) are the predominant sources of information about the coding potential of uncultured microbial lineages, but their strengths and limitations remain poorly understood. Here, we performed a direct comparison of two previously published collections of thousands of SAGs and MAGs obtained from the same, global environment.
Results: We found that SAGs were less prone to chimerism and more accurately reflected the relative abundance and the pangenome content of microbial lineages inhabiting the epipelagic of the tropical and subtropical ocean, as compared to MAGs. SAGs were also better suited to link genome information with taxa discovered through 16S rRNA amplicon analyses. Meanwhile, MAGs had the advantage of more readily recovering genomes of rare lineages.
Conclusions: Our analyses revealed the relative strengths and weaknesses of the two most commonly used genome recovery approaches in environmental microbiology. These considerations, as well as the need for better tools for genome quality assessment, should be taken into account when designing studies and interpreting data that involve SAGs or MAGs. Video Abstract.
期刊介绍:
Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.