Unveiling the Potential of Diffraction Gratings for Precision Separation of Higher Harmonics in Nonlinear Acoustics

IF 3 2区 工程技术 Q1 ACOUSTICS
Pooja Dubey;Shreya Nigam;Dicky Silitonga;Nico F. Declercq
{"title":"Unveiling the Potential of Diffraction Gratings for Precision Separation of Higher Harmonics in Nonlinear Acoustics","authors":"Pooja Dubey;Shreya Nigam;Dicky Silitonga;Nico F. Declercq","doi":"10.1109/TUFFC.2024.3428917","DOIUrl":null,"url":null,"abstract":"Diffraction gratings, with their periodically ordered structures, have been critical components in acoustics, optics, and spectroscopy for over a century. The classical grating equation describes the emergence of diffraction phenomena by gratings, considering the groove periodicity and the characteristics of the incident wave. These gratings find extensive applications in communication, spectroscopy, architectural acoustics, and underwater research, and they are foundational to pioneering investigations in phononic crystals and meta-materials. While much attention has been given to understanding the diffraction behavior of linear acoustics concerning gratings, the literature lacks research regarding the influence of high-amplitude ultrasonic waves, which introduce observable nonlinear effects. This experimental enquiry presents a pioneering methodology for isolating higher harmonics from these nonlinear phenomena. We have developed a spatial filtering apparatus with a single-frequency transducer and a specially designed grating profile, enabling precise frequency selection or rejection.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1152-1161"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599308/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Diffraction gratings, with their periodically ordered structures, have been critical components in acoustics, optics, and spectroscopy for over a century. The classical grating equation describes the emergence of diffraction phenomena by gratings, considering the groove periodicity and the characteristics of the incident wave. These gratings find extensive applications in communication, spectroscopy, architectural acoustics, and underwater research, and they are foundational to pioneering investigations in phononic crystals and meta-materials. While much attention has been given to understanding the diffraction behavior of linear acoustics concerning gratings, the literature lacks research regarding the influence of high-amplitude ultrasonic waves, which introduce observable nonlinear effects. This experimental enquiry presents a pioneering methodology for isolating higher harmonics from these nonlinear phenomena. We have developed a spatial filtering apparatus with a single-frequency transducer and a specially designed grating profile, enabling precise frequency selection or rejection.
揭示衍射光栅在非线性声学中精确分离高次谐波的潜力。
一个多世纪以来,具有周期性有序结构的衍射光栅一直是声学、光学和光谱学的重要组成部分。经典的光栅方程描述了光栅的衍射现象,并考虑了凹槽的周期性和入射波的特性。这些光栅广泛应用于通信、光谱学、建筑声学和水下研究领域,是研究声波晶体和元材料的基础。虽然人们对有关光栅的线性声学衍射行为的理解给予了极大关注,但文献中缺乏有关高振幅超声波影响的研究,而高振幅超声波会引入可观察到的非线性效应。本实验研究提出了一种从这些非线性现象中分离出高次谐波的开创性方法。我们开发了一种空间滤波设备,该设备采用单频换能器和专门设计的光栅轮廓,可实现精确的频率选择或剔除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信