Multidimensional regularity processing in music: an examination using redundant signals effect.

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Experimental Brain Research Pub Date : 2024-09-01 Epub Date: 2024-07-16 DOI:10.1007/s00221-024-06861-4
Kai Ishida, Hiroshi Nittono
{"title":"Multidimensional regularity processing in music: an examination using redundant signals effect.","authors":"Kai Ishida, Hiroshi Nittono","doi":"10.1007/s00221-024-06861-4","DOIUrl":null,"url":null,"abstract":"<p><p>Music is based on various regularities, ranging from the repetition of physical sounds to theoretically organized harmony and counterpoint. How are multidimensional regularities processed when we listen to music? The present study focuses on the redundant signals effect (RSE) as a novel approach to untangling the relationship between these regularities in music. The RSE refers to the occurrence of a shorter reaction time (RT) when two or three signals are presented simultaneously than when only one of these signals is presented, and provides evidence that these signals are processed concurrently. In two experiments, chords that deviated from tonal (harmonic) and acoustic (intensity and timbre) regularities were presented occasionally in the final position of short chord sequences. The participants were asked to detect all deviant chords while withholding their responses to non-deviant chords (i.e., the Go/NoGo task). RSEs were observed in all double- and triple-deviant combinations, reflecting processing of multidimensional regularities. Further analyses suggested evidence of coactivation by separate perceptual modules in the combination of tonal and acoustic deviants, but not in the combination of two acoustic deviants. These results imply that tonal and acoustic regularities are different enough to be processed as two discrete pieces of information. Examining the underlying process of RSE may elucidate the relationship between multidimensional regularity processing in music.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2207-2217"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06861-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Music is based on various regularities, ranging from the repetition of physical sounds to theoretically organized harmony and counterpoint. How are multidimensional regularities processed when we listen to music? The present study focuses on the redundant signals effect (RSE) as a novel approach to untangling the relationship between these regularities in music. The RSE refers to the occurrence of a shorter reaction time (RT) when two or three signals are presented simultaneously than when only one of these signals is presented, and provides evidence that these signals are processed concurrently. In two experiments, chords that deviated from tonal (harmonic) and acoustic (intensity and timbre) regularities were presented occasionally in the final position of short chord sequences. The participants were asked to detect all deviant chords while withholding their responses to non-deviant chords (i.e., the Go/NoGo task). RSEs were observed in all double- and triple-deviant combinations, reflecting processing of multidimensional regularities. Further analyses suggested evidence of coactivation by separate perceptual modules in the combination of tonal and acoustic deviants, but not in the combination of two acoustic deviants. These results imply that tonal and acoustic regularities are different enough to be processed as two discrete pieces of information. Examining the underlying process of RSE may elucidate the relationship between multidimensional regularity processing in music.

Abstract Image

音乐中的多维规则性处理:利用冗余信号效应进行研究。
音乐以各种规律性为基础,从物理声音的重复到理论上组织的和声与对位。我们在聆听音乐时是如何处理多维规律性的?本研究将重点放在冗余信号效应(RSE)上,将其作为一种新方法来解开音乐中这些规律性之间的关系。冗余信号效应指的是当同时出现两个或三个信号时,反应时间(RT)比只出现其中一个信号时短,这为这些信号被同时处理提供了证据。在两个实验中,偏离调性(和声)和声学(强度和音色)规律的和弦偶尔出现在短和弦序列的最后位置。参与者被要求检测出所有偏差和弦,同时对非偏差和弦不做反应(即 Go/NoGo 任务)。在所有双偏差和三偏差组合中都观察到了 RSE,这反映了对多维规律性的处理。进一步的分析表明,在音调和声音偏差的组合中,有证据表明不同的知觉模块发生了共激活,但在两个声音偏差的组合中却没有。这些结果表明,音调和声音的规律性是不同的,足以作为两个独立的信息进行处理。研究 RSE 的基本过程可以阐明音乐中多维规律性处理之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信