{"title":"Copper-induced renal toxicity controlled by period1 through modulation of Atox1 in mice.","authors":"Sarah Tominaga, Hiroki Yoshioka, Satoshi Yokota, Yosuke Tsukiboshi, Masumi Suzui, Makoto Nagai, Hirokazu Hara, Nobuhiko Miura, Tohru Maeda","doi":"10.2220/biomedres.45.143","DOIUrl":null,"url":null,"abstract":"<p><p>Copper (Cu) is known to induce oxidative stress and apoptosis in the liver, kidney, and brain. We previously demonstrated the molecular mechanism underlying the Cu-induced hepatic diurnal variation. However, the cellular molecule(s) involved in Cu-induced renal chronotoxicity remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying Cu-induced diurnal toxicity in the kidneys. We evaluated cell viability and clock gene expression levels in mouse renal cortex tubular cells (MuRTE61 cells) after Cu treatment. We also examined the Cu homeostasis- and apoptosis-related gene levels after period 1 (Per1) overexpression in MuRTE61 cells. Cu treatment decreased MuRTE61 cell viability in a dose-dependent manner. It increased the Per1 expression levels after 24 h. Notably, Per1 overexpression alleviated the Cu-induced inhibition of MuRTE61 cell viability. Moreover, Per1 overexpression downregulated the cleaved caspase-3 and reduced Cu levels by upregulating the antioxidant 1 copper chaperone (Atox1) levels. These results suggest that Cu-induced renal toxicity is associated with Per1 expression via the regulation of the copper chaperone, Atox1.</p>","PeriodicalId":9138,"journal":{"name":"Biomedical Research-tokyo","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research-tokyo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2220/biomedres.45.143","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Copper (Cu) is known to induce oxidative stress and apoptosis in the liver, kidney, and brain. We previously demonstrated the molecular mechanism underlying the Cu-induced hepatic diurnal variation. However, the cellular molecule(s) involved in Cu-induced renal chronotoxicity remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying Cu-induced diurnal toxicity in the kidneys. We evaluated cell viability and clock gene expression levels in mouse renal cortex tubular cells (MuRTE61 cells) after Cu treatment. We also examined the Cu homeostasis- and apoptosis-related gene levels after period 1 (Per1) overexpression in MuRTE61 cells. Cu treatment decreased MuRTE61 cell viability in a dose-dependent manner. It increased the Per1 expression levels after 24 h. Notably, Per1 overexpression alleviated the Cu-induced inhibition of MuRTE61 cell viability. Moreover, Per1 overexpression downregulated the cleaved caspase-3 and reduced Cu levels by upregulating the antioxidant 1 copper chaperone (Atox1) levels. These results suggest that Cu-induced renal toxicity is associated with Per1 expression via the regulation of the copper chaperone, Atox1.
期刊介绍:
Biomedical Research is peer-reviewed International Research Journal . It was first launched in 1990 as a biannual English Journal and later became triannual. From 2008 it is published in Jan-Apr/ May-Aug/ Sep-Dec..