Omer Nabeel Dara, Abdullahi Abdu Ibrahim, Tareq Abed Mohammed
{"title":"Advancing medical imaging: detecting polypharmacy and adverse drug effects with Graph Convolutional Networks (GCN).","authors":"Omer Nabeel Dara, Abdullahi Abdu Ibrahim, Tareq Abed Mohammed","doi":"10.1186/s12880-024-01349-7","DOIUrl":null,"url":null,"abstract":"<p><p>Polypharmacy involves an individual using many medications at the same time and is a frequent healthcare technique used to treat complex medical disorders. Nevertheless, it also presents substantial risks of negative medication responses and interactions. Identifying and addressing adverse effects caused by polypharmacy is crucial to ensure patient safety and improve healthcare results. This paper introduces a new method using Graph Convolutional Networks (GCN) to identify polypharmacy side effects. Our strategy involves developing a medicine interaction graph in which edges signify drug-drug intuitive predicated on pharmacological properties and hubs symbolize drugs. GCN is a well-suited profound learning procedure for graph-based representations of social information. It can be used to anticipate the probability of medicate unfavorable impacts and to memorize important representations of sedate intuitive. Tests were conducted on a huge dataset of patients' pharmaceutical records commented on with watched medicate unfavorable impacts in arrange to approve our strategy. Execution of the GCN show, which was prepared on a subset of this dataset, was evaluated through a disarray framework. The perplexity network shows the precision with which the show categories occasions. Our discoveries demonstrate empowering advance within the recognizable proof of antagonistic responses related with polypharmaceuticals. For cardiovascular system target drugs, GCN technique achieved an accuracy of 94.12%, precision of 86.56%, F1-Score of 88.56%, AUC of 89.74% and recall of 87.92%. For respiratory system target drugs, GCN technique achieved an accuracy of 93.38%, precision of 85.64%, F1-Score of 89.79%, AUC of 91.85% and recall of 86.35%. And for nervous system target drugs, GCN technique achieved an accuracy of 95.27%, precision of 88.36%, F1-Score of 86.49%, AUC of 88.83% and recall of 84.73%. This research provides a significant contribution to pharmacovigilance by proposing a data-driven method to detect and reduce polypharmacy side effects, thereby increasing patient safety and healthcare decision-making.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01349-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Polypharmacy involves an individual using many medications at the same time and is a frequent healthcare technique used to treat complex medical disorders. Nevertheless, it also presents substantial risks of negative medication responses and interactions. Identifying and addressing adverse effects caused by polypharmacy is crucial to ensure patient safety and improve healthcare results. This paper introduces a new method using Graph Convolutional Networks (GCN) to identify polypharmacy side effects. Our strategy involves developing a medicine interaction graph in which edges signify drug-drug intuitive predicated on pharmacological properties and hubs symbolize drugs. GCN is a well-suited profound learning procedure for graph-based representations of social information. It can be used to anticipate the probability of medicate unfavorable impacts and to memorize important representations of sedate intuitive. Tests were conducted on a huge dataset of patients' pharmaceutical records commented on with watched medicate unfavorable impacts in arrange to approve our strategy. Execution of the GCN show, which was prepared on a subset of this dataset, was evaluated through a disarray framework. The perplexity network shows the precision with which the show categories occasions. Our discoveries demonstrate empowering advance within the recognizable proof of antagonistic responses related with polypharmaceuticals. For cardiovascular system target drugs, GCN technique achieved an accuracy of 94.12%, precision of 86.56%, F1-Score of 88.56%, AUC of 89.74% and recall of 87.92%. For respiratory system target drugs, GCN technique achieved an accuracy of 93.38%, precision of 85.64%, F1-Score of 89.79%, AUC of 91.85% and recall of 86.35%. And for nervous system target drugs, GCN technique achieved an accuracy of 95.27%, precision of 88.36%, F1-Score of 86.49%, AUC of 88.83% and recall of 84.73%. This research provides a significant contribution to pharmacovigilance by proposing a data-driven method to detect and reduce polypharmacy side effects, thereby increasing patient safety and healthcare decision-making.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.