Bing Yang, Zhongyuan Wang, Shujuan Wang, Xiaofeng Li
{"title":"Unveiling the Hub Genes Involved in Cadmium-Induced Hepatotoxicity.","authors":"Bing Yang, Zhongyuan Wang, Shujuan Wang, Xiaofeng Li","doi":"10.1007/s12011-024-04307-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) is a highly toxic heavy metal that can cause severe liver damage in both humans and animals. However, the specific genes responsible for Cd-induced hepatotoxicity are still not fully understood. Therefore, the aim of this study was to identify the key genes associated with Cd-induced liver damage. To achieve this, we utilized the GSE19662 dataset from the Gene Expression Omnibus (GEO), which consisted of rat hepatocyte samples treated with cadmium chloride (CdCl<sub>2</sub>) as well as control groups. By focusing on rat hepatocytes treated with 0.10 ppm of CdCl<sub>2</sub>, the study identified 851 differentially expressed genes (DEGs), with 438 genes being upregulated and 413 genes being downregulated. Gene Ontology (GO) analysis revealed that these DEGs were primarily involved in inflammatory responses, xenobiotic metabolic processes, and the response to drugs and xenobiotic stimuli. Finally, the study identified several hub genes, including CYP2E1, CYP3A62, CYP2C11, CYP2C13, CYP2B3, HSP90B1, HSP90AA1, GSTA2, and MAPK8, which were associated with CdCl<sub>2</sub>-induced liver damage. Furthermore, pathway analysis demonstrated that these hub genes were mainly linked to pathways involved in chemical carcinogenesis, metabolic processes, steroid hormone biosynthesis, retinol metabolism, linoleic acid metabolism, arachidonic acid metabolism, inflammatory mediator regulation, Ras, and protein processing in the endoplasmic reticulum. In conclusion, this study provides important insights into the molecular mechanisms underlying Cd-induced liver damage.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"2186-2205"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04307-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd) is a highly toxic heavy metal that can cause severe liver damage in both humans and animals. However, the specific genes responsible for Cd-induced hepatotoxicity are still not fully understood. Therefore, the aim of this study was to identify the key genes associated with Cd-induced liver damage. To achieve this, we utilized the GSE19662 dataset from the Gene Expression Omnibus (GEO), which consisted of rat hepatocyte samples treated with cadmium chloride (CdCl2) as well as control groups. By focusing on rat hepatocytes treated with 0.10 ppm of CdCl2, the study identified 851 differentially expressed genes (DEGs), with 438 genes being upregulated and 413 genes being downregulated. Gene Ontology (GO) analysis revealed that these DEGs were primarily involved in inflammatory responses, xenobiotic metabolic processes, and the response to drugs and xenobiotic stimuli. Finally, the study identified several hub genes, including CYP2E1, CYP3A62, CYP2C11, CYP2C13, CYP2B3, HSP90B1, HSP90AA1, GSTA2, and MAPK8, which were associated with CdCl2-induced liver damage. Furthermore, pathway analysis demonstrated that these hub genes were mainly linked to pathways involved in chemical carcinogenesis, metabolic processes, steroid hormone biosynthesis, retinol metabolism, linoleic acid metabolism, arachidonic acid metabolism, inflammatory mediator regulation, Ras, and protein processing in the endoplasmic reticulum. In conclusion, this study provides important insights into the molecular mechanisms underlying Cd-induced liver damage.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.