Unveiling the distinctive mechanical and thermal properties of γ-GeSe

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jinsub Park, Yugyeong Je, Joonho Kim, Je Myoung Park, Joong-Eon Jung, Hyeonsik Cheong, Sang Wook Lee, Kwanpyo Kim
{"title":"Unveiling the distinctive mechanical and thermal properties of γ-GeSe","authors":"Jinsub Park,&nbsp;Yugyeong Je,&nbsp;Joonho Kim,&nbsp;Je Myoung Park,&nbsp;Joong-Eon Jung,&nbsp;Hyeonsik Cheong,&nbsp;Sang Wook Lee,&nbsp;Kwanpyo Kim","doi":"10.1186/s40580-024-00436-3","DOIUrl":null,"url":null,"abstract":"<div><p>γ-GeSe is a newly identified polymorph among group-IV monochalcogenides, characterized by a distinctive interatomic bonding configuration. Despite its promising applications in electrical and thermal domains, the experimental verification of its mechanical and thermal properties remains unreported. Here, we experimentally characterize the in-plane Young’s modulus (<i>E</i>) and thermal conductivity (<span>\\(\\:\\kappa\\:\\)</span>) of γ-GeSe. The mechanical vibrational modes of freestanding γ-GeSe flakes are measured using optical interferometry. Nano-indentation via atomic force microscopy is also conducted to induce mechanical deformation and to extract the <i>E</i>. Comparison with finite-element simulations reveals that the <i>E</i> is 97.3<span>\\(\\:\\pm\\:\\)</span>7.5 GPa as determined by optical interferometry and 109.4<span>\\(\\:\\pm\\:\\)</span>13.5 GPa as established through the nano-indentation method. Additionally, optothermal Raman spectroscopy reveals that γ-GeSe has a lattice thermal conductivity of 2.3 <span>\\(\\:\\pm\\:\\)</span> 0.4 Wm<sup>−1</sup>K<sup>−1</sup> and a total thermal conductivity of 7.5 <span>\\(\\:\\pm\\:\\)</span> 0.4 Wm<sup>−1</sup>K<sup>−1</sup> in the in-plane direction at room temperature. The notably high <span>\\(\\:E/\\kappa\\:\\)</span> ratio in γ-GeSe, compared to other layered materials, underscores its distinctive structural and dynamic characteristics.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00436-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00436-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

γ-GeSe is a newly identified polymorph among group-IV monochalcogenides, characterized by a distinctive interatomic bonding configuration. Despite its promising applications in electrical and thermal domains, the experimental verification of its mechanical and thermal properties remains unreported. Here, we experimentally characterize the in-plane Young’s modulus (E) and thermal conductivity (\(\:\kappa\:\)) of γ-GeSe. The mechanical vibrational modes of freestanding γ-GeSe flakes are measured using optical interferometry. Nano-indentation via atomic force microscopy is also conducted to induce mechanical deformation and to extract the E. Comparison with finite-element simulations reveals that the E is 97.3\(\:\pm\:\)7.5 GPa as determined by optical interferometry and 109.4\(\:\pm\:\)13.5 GPa as established through the nano-indentation method. Additionally, optothermal Raman spectroscopy reveals that γ-GeSe has a lattice thermal conductivity of 2.3 \(\:\pm\:\) 0.4 Wm−1K−1 and a total thermal conductivity of 7.5 \(\:\pm\:\) 0.4 Wm−1K−1 in the in-plane direction at room temperature. The notably high \(\:E/\kappa\:\) ratio in γ-GeSe, compared to other layered materials, underscores its distinctive structural and dynamic characteristics.

揭示γ-GeSe独特的机械和热特性。
γ-锗硒是第四族单质中新发现的一种多晶体,具有独特的原子间成键构型。尽管γ-GeSe 在电学和热学领域有着广阔的应用前景,但其机械和热学特性的实验验证仍未见报道。在此,我们通过实验表征了 γ-GeSe 的面内杨氏模量(E)和热导率([公式:见正文])。我们使用光学干涉测量法测量了独立γ-GeSe 薄片的机械振动模式。与有限元模拟进行比较后发现,光学干涉仪测定的 E 值为 97.3[式:见正文]7.5GPa,纳米压痕法测定的 E 值为 109.4[式:见正文]13.5GPa。此外,光热拉曼光谱显示,γ-GeSe 在室温下的晶格热导率为 2.3 [式:见正文] 0.4 Wm-1K-1,面内方向的总热导率为 7.5 [式:见正文] 0.4 Wm-1K-1。与其他层状材料相比,γ-GeSe 的[计算公式:见正文]比率明显较高,这突显了其独特的结构和动态特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信