Predicting Emission Wavelengths in Benzobisoxazole-Based OLEDs with Gradient Boosted Ensemble Models.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2024-08-01 Epub Date: 2024-07-15 DOI:10.1021/acs.jpca.4c00077
Shambhavi Tannir, Yuning Pan, Nathaniel Josephs, Christopher Cunningham, Nathan R Hendrick, Annie Beckett, James McNeely, Aaron Beeler, Malika Jeffries-El, Eric D Kolaczyk
{"title":"Predicting Emission Wavelengths in Benzobisoxazole-Based OLEDs with Gradient Boosted Ensemble Models.","authors":"Shambhavi Tannir, Yuning Pan, Nathaniel Josephs, Christopher Cunningham, Nathan R Hendrick, Annie Beckett, James McNeely, Aaron Beeler, Malika Jeffries-El, Eric D Kolaczyk","doi":"10.1021/acs.jpca.4c00077","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate the use of gradient-boosted ensemble models that accurately predict emission wavelengths in benzobis[1,2-<i>d</i>:4,5-<i>d</i>']oxazole (BBO) based fluorescent emitters. We have curated a database of 50 molecules from previously published data by the Jeffries-EL group using density functional theory (DFT) computed ground and excited state features. We consider two machine learning (ML) models based on (i) whole cruciform molecules and (ii) their constituent fragment molecules. Both ML models provide accurate predictions with root-mean-square errors between 30 and 36 nm, competitive with state-of-the-art deep learning models trained on orders of magnitude more molecules, and this accuracy holds even when tested on four new BBO emitters unseen by the models. We also provide an interpretable feature importance analysis and discuss the relevant relationships between DFT and changes in predicted emission wavelength.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c00077","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate the use of gradient-boosted ensemble models that accurately predict emission wavelengths in benzobis[1,2-d:4,5-d']oxazole (BBO) based fluorescent emitters. We have curated a database of 50 molecules from previously published data by the Jeffries-EL group using density functional theory (DFT) computed ground and excited state features. We consider two machine learning (ML) models based on (i) whole cruciform molecules and (ii) their constituent fragment molecules. Both ML models provide accurate predictions with root-mean-square errors between 30 and 36 nm, competitive with state-of-the-art deep learning models trained on orders of magnitude more molecules, and this accuracy holds even when tested on four new BBO emitters unseen by the models. We also provide an interpretable feature importance analysis and discuss the relevant relationships between DFT and changes in predicted emission wavelength.

Abstract Image

用梯度提升集合模型预测苯并异噁唑型有机发光二极管的发射波长
我们展示了梯度增强集合模型的使用,它能准确预测基于苯并双[1,2-d:4,5-d']恶唑(BBO)的荧光发射体的发射波长。我们利用密度泛函理论(DFT)计算出的基态和激发态特征,从 Jeffries-EL 小组以前发表的数据中整理出了一个包含 50 个分子的数据库。我们考虑了基于 (i) 整个十字形分子和 (ii) 其组成片段分子的两种机器学习 (ML) 模型。这两种 ML 模型都能提供精确的预测,均方根误差在 30 到 36 nm 之间,与在更多数量级的分子上训练出来的最先进的深度学习模型相比具有竞争力。我们还提供了可解释的特征重要性分析,并讨论了 DFT 与预测发射波长变化之间的相关关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信