Carson C. Cole, Douglas R. Walker, Sarah A. H. Hulgan, Brett H. Pogostin, Joseph W. R. Swain, Mitchell D. Miller, Weijun Xu, Ryan Duella, Mikita Misiura, Xu Wang, Anatoly B. Kolomeisky, George N. Philips Jr, Jeffrey D. Hartgerink
{"title":"Heterotrimeric collagen helix with high specificity of assembly results in a rapid rate of folding","authors":"Carson C. Cole, Douglas R. Walker, Sarah A. H. Hulgan, Brett H. Pogostin, Joseph W. R. Swain, Mitchell D. Miller, Weijun Xu, Ryan Duella, Mikita Misiura, Xu Wang, Anatoly B. Kolomeisky, George N. Philips Jr, Jeffrey D. Hartgerink","doi":"10.1038/s41557-024-01573-2","DOIUrl":null,"url":null,"abstract":"The most abundant natural collagens form heterotrimeric triple helices. Synthetic mimics of collagen heterotrimers have been found to fold slowly, even compared to the already slow rates of homotrimeric helices. These prolonged folding rates are not understood. Here we compare the stabilities, specificities and folding rates of three heterotrimeric collagen mimics designed through a computationally assisted approach. The crystal structure of one ABC-type heterotrimer verified a well-controlled composition and register and elucidated the geometry of pairwise cation–π and axial and lateral salt bridges in the assembly. This collagen heterotrimer folds much faster (hours versus days) than comparable, well-designed systems. Circular dichroism and NMR data suggest the folding is frustrated by unproductive, competing heterotrimer species and these species must unwind before refolding into the thermodynamically favoured assembly. The heterotrimeric collagen folding rate is inhibited by the introduction of preformed competing triple-helical assemblies, which suggests that slow heterotrimer folding kinetics are dominated by the frustration of the energy landscape caused by competing triple helices. The mechanism of collagen heterotrimer folding is difficult to recapitulate synthetically. Now an ABC collagen mimetic heterotrimer has been designed that employs pairwise amino acid interactions, validated by X-ray crystallography, to promote composition- and register-specific assembly. The high specificity of its assembly leads to an increased rate of folding compared with similar collagen heterotrimers.","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":null,"pages":null},"PeriodicalIF":19.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41557-024-01573-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The most abundant natural collagens form heterotrimeric triple helices. Synthetic mimics of collagen heterotrimers have been found to fold slowly, even compared to the already slow rates of homotrimeric helices. These prolonged folding rates are not understood. Here we compare the stabilities, specificities and folding rates of three heterotrimeric collagen mimics designed through a computationally assisted approach. The crystal structure of one ABC-type heterotrimer verified a well-controlled composition and register and elucidated the geometry of pairwise cation–π and axial and lateral salt bridges in the assembly. This collagen heterotrimer folds much faster (hours versus days) than comparable, well-designed systems. Circular dichroism and NMR data suggest the folding is frustrated by unproductive, competing heterotrimer species and these species must unwind before refolding into the thermodynamically favoured assembly. The heterotrimeric collagen folding rate is inhibited by the introduction of preformed competing triple-helical assemblies, which suggests that slow heterotrimer folding kinetics are dominated by the frustration of the energy landscape caused by competing triple helices. The mechanism of collagen heterotrimer folding is difficult to recapitulate synthetically. Now an ABC collagen mimetic heterotrimer has been designed that employs pairwise amino acid interactions, validated by X-ray crystallography, to promote composition- and register-specific assembly. The high specificity of its assembly leads to an increased rate of folding compared with similar collagen heterotrimers.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.