{"title":"Elimination of grain surface concavities for improved perovskite thin-film interfaces","authors":"Tong Xiao, Mingwei Hao, Tianwei Duan, Yanyan Li, Yalan Zhang, Peijun Guo, Yuanyuan Zhou","doi":"10.1038/s41560-024-01567-x","DOIUrl":null,"url":null,"abstract":"The surface of individual grains of metal halide perovskite films can determine the properties of heterointerfaces at the microscale and the performance of the resultant solar cells. However, the geometric characteristics of grain surfaces have rarely been investigated. Here we elaborate on the existence of grain surface concavities (GSCs) and their effects on the charge-extracting, chemical and thermomechanical properties of buried perovskite heterointerfaces. The evolution of GSCs is triggered by grain-coalescence-induced biaxial tensile strain and thermal-coarsening-induced grain-boundary grooving. As such, GSCs are tailorable by regulating the grain growth kinetics. As a proof of concept, we used tridecafluorohexane-1-sulfonic acid potassium to alleviate biaxial tensile strain and grain-boundary grooving by molecular functionalization, thus forming non-concave grain micro-surfaces. The resultant perovskite solar cells demonstrate enhanced power conversion efficiency and elevated power conversion efficiency retention under ISOS-standardized thermal cycling (300 cycles), damp heat (660 h) and maximum power point tracking (1,290 h) tests. This work sheds light on micro-surface engineering to improve the durability and performance of perovskite solar cells and optoelectronics. Interfaces are crucial to the operation of perovskite solar cells. Xiao et al. report the existence of detrimental grain surface concavities and their removal with molecular additives to achieve solar cells with improved efficiency and stability.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 8","pages":"999-1010"},"PeriodicalIF":49.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01567-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The surface of individual grains of metal halide perovskite films can determine the properties of heterointerfaces at the microscale and the performance of the resultant solar cells. However, the geometric characteristics of grain surfaces have rarely been investigated. Here we elaborate on the existence of grain surface concavities (GSCs) and their effects on the charge-extracting, chemical and thermomechanical properties of buried perovskite heterointerfaces. The evolution of GSCs is triggered by grain-coalescence-induced biaxial tensile strain and thermal-coarsening-induced grain-boundary grooving. As such, GSCs are tailorable by regulating the grain growth kinetics. As a proof of concept, we used tridecafluorohexane-1-sulfonic acid potassium to alleviate biaxial tensile strain and grain-boundary grooving by molecular functionalization, thus forming non-concave grain micro-surfaces. The resultant perovskite solar cells demonstrate enhanced power conversion efficiency and elevated power conversion efficiency retention under ISOS-standardized thermal cycling (300 cycles), damp heat (660 h) and maximum power point tracking (1,290 h) tests. This work sheds light on micro-surface engineering to improve the durability and performance of perovskite solar cells and optoelectronics. Interfaces are crucial to the operation of perovskite solar cells. Xiao et al. report the existence of detrimental grain surface concavities and their removal with molecular additives to achieve solar cells with improved efficiency and stability.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.