Sana Alazwari, Mashael Maashi, Jamal Alsamri, Mohammad Alamgeer, Shouki A Ebad, Saud S Alotaibi, Marwa Obayya, Samah Al Zanin
{"title":"Improving laryngeal cancer detection using chaotic metaheuristics integration with squeeze-and-excitation resnet model.","authors":"Sana Alazwari, Mashael Maashi, Jamal Alsamri, Mohammad Alamgeer, Shouki A Ebad, Saud S Alotaibi, Marwa Obayya, Samah Al Zanin","doi":"10.1007/s13755-024-00296-5","DOIUrl":null,"url":null,"abstract":"<p><p>Laryngeal cancer (LC) represents a substantial world health problem, with diminished survival rates attributed to late-stage diagnoses. Correct treatment for LC is complex, particularly in the final stages. This kind of cancer is a complex malignancy inside the head and neck region of patients. Recently, researchers serving medical consultants to recognize LC efficiently develop different analysis methods and tools. However, these existing tools and techniques have various problems regarding performance constraints, like lesser accuracy in detecting LC at the early stages, additional computational complexity, and colossal time utilization in patient screening. Deep learning (DL) approaches have been established that are effective in the recognition of LC. Therefore, this study develops an efficient LC Detection using the Chaotic Metaheuristics Integration with the DL (LCD-CMDL) technique. The LCD-CMDL technique mainly focuses on detecting and classifying LC utilizing throat region images. In the LCD-CMDL technique, the contrast enhancement process uses the CLAHE approach. For feature extraction, the LCD-CMDL technique applies the Squeeze-and-Excitation ResNet (SE-ResNet) model to learn the complex and intrinsic features from the image preprocessing. Moreover, the hyperparameter tuning of the SE-ResNet approach is performed using a chaotic adaptive sparrow search algorithm (CSSA). Finally, the extreme learning machine (ELM) model was applied to detect and classify the LC. The performance evaluation of the LCD-CMDL approach occurs utilizing a benchmark throat region image database. The experimental values implied the superior performance of the LCD-CMDL approach over recent state-of-the-art approaches.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"38"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239646/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00296-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Laryngeal cancer (LC) represents a substantial world health problem, with diminished survival rates attributed to late-stage diagnoses. Correct treatment for LC is complex, particularly in the final stages. This kind of cancer is a complex malignancy inside the head and neck region of patients. Recently, researchers serving medical consultants to recognize LC efficiently develop different analysis methods and tools. However, these existing tools and techniques have various problems regarding performance constraints, like lesser accuracy in detecting LC at the early stages, additional computational complexity, and colossal time utilization in patient screening. Deep learning (DL) approaches have been established that are effective in the recognition of LC. Therefore, this study develops an efficient LC Detection using the Chaotic Metaheuristics Integration with the DL (LCD-CMDL) technique. The LCD-CMDL technique mainly focuses on detecting and classifying LC utilizing throat region images. In the LCD-CMDL technique, the contrast enhancement process uses the CLAHE approach. For feature extraction, the LCD-CMDL technique applies the Squeeze-and-Excitation ResNet (SE-ResNet) model to learn the complex and intrinsic features from the image preprocessing. Moreover, the hyperparameter tuning of the SE-ResNet approach is performed using a chaotic adaptive sparrow search algorithm (CSSA). Finally, the extreme learning machine (ELM) model was applied to detect and classify the LC. The performance evaluation of the LCD-CMDL approach occurs utilizing a benchmark throat region image database. The experimental values implied the superior performance of the LCD-CMDL approach over recent state-of-the-art approaches.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.