Simone Garcia Oliveira, Samuel Lourenço Nogueira, Nicoly Ribeiro Uliam, Paulo Matheus Girardi, Thiago Luiz Russo
{"title":"Measurement properties of activity monitoring for a rehabilitation (AMoR) platform in post-stroke individuals in a simulated home environment.","authors":"Simone Garcia Oliveira, Samuel Lourenço Nogueira, Nicoly Ribeiro Uliam, Paulo Matheus Girardi, Thiago Luiz Russo","doi":"10.1080/10749357.2024.2377520","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study was to evaluate the measurement properties of activity monitoring for a rehabilitation (AMoR) platform for step counting, time spent in sedentary behavior, and postural changes during activities of daily living (ADLs) in a simulated home environment.</p><p><strong>Methods: </strong>Twenty-one individuals in the post-stroke chronic phase used the AMoR platform during an ADL protocol and were monitored by a video camera. Spearman's correlation coefficient, mean absolute percent error (MAPE), intraclass correlation coefficient (ICC), and Bland-Altman plot analyses were used to estimate the validity and reliability between the AMoR platform and the video for step counting, time spent sitting/lying, and postural changes from sit-to-stand (SI-ST) and sit-to-stand (ST-SI).</p><p><strong>Results: </strong>Validity of the platform was observed with very high correlation values for step counting (rs = 0.998) and time spent sitting/lying (rs = 0.992) and high correlation for postural change of SI-ST (rs = 0.850) and ST-SI (rs = 0.851) when compared to the video. An error percentage above 5% was observed only for the SI-ST postural change (7.13%). The ICC values show excellent agreement for step counting (ICC3, k = 0.999) and time spent sitting/lying (ICC3, k = 0.992), and good agreement for SI-ST (ICC3, k = 0.859) and ST-SI (ICC3, k = 0.936) postural change. Values of the differences for step counting, sitting/lying time, and postural change were within the limits of agreement according to the analysis of the Bland-Altman graph.</p><p><strong>Conclusion: </strong>The AMoR platform presented validity and reliability for step counting, time spent sitting/lying, and identification of SI-ST and ST-SI postural changes during tests in a simulated environment in post-stroke individuals.</p>","PeriodicalId":23164,"journal":{"name":"Topics in Stroke Rehabilitation","volume":" ","pages":"1-11"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Stroke Rehabilitation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10749357.2024.2377520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The aim of this study was to evaluate the measurement properties of activity monitoring for a rehabilitation (AMoR) platform for step counting, time spent in sedentary behavior, and postural changes during activities of daily living (ADLs) in a simulated home environment.
Methods: Twenty-one individuals in the post-stroke chronic phase used the AMoR platform during an ADL protocol and were monitored by a video camera. Spearman's correlation coefficient, mean absolute percent error (MAPE), intraclass correlation coefficient (ICC), and Bland-Altman plot analyses were used to estimate the validity and reliability between the AMoR platform and the video for step counting, time spent sitting/lying, and postural changes from sit-to-stand (SI-ST) and sit-to-stand (ST-SI).
Results: Validity of the platform was observed with very high correlation values for step counting (rs = 0.998) and time spent sitting/lying (rs = 0.992) and high correlation for postural change of SI-ST (rs = 0.850) and ST-SI (rs = 0.851) when compared to the video. An error percentage above 5% was observed only for the SI-ST postural change (7.13%). The ICC values show excellent agreement for step counting (ICC3, k = 0.999) and time spent sitting/lying (ICC3, k = 0.992), and good agreement for SI-ST (ICC3, k = 0.859) and ST-SI (ICC3, k = 0.936) postural change. Values of the differences for step counting, sitting/lying time, and postural change were within the limits of agreement according to the analysis of the Bland-Altman graph.
Conclusion: The AMoR platform presented validity and reliability for step counting, time spent sitting/lying, and identification of SI-ST and ST-SI postural changes during tests in a simulated environment in post-stroke individuals.
期刊介绍:
Topics in Stroke Rehabilitation is the leading journal devoted to the study and dissemination of interdisciplinary, evidence-based, clinical information related to stroke rehabilitation. The journal’s scope covers physical medicine and rehabilitation, neurology, neurorehabilitation, neural engineering and therapeutics, neuropsychology and cognition, optimization of the rehabilitation system, robotics and biomechanics, pain management, nursing, physical therapy, cardiopulmonary fitness, mobility, occupational therapy, speech pathology and communication. There is a particular focus on stroke recovery, improving rehabilitation outcomes, quality of life, activities of daily living, motor control, family and care givers, and community issues.
The journal reviews and reports clinical practices, clinical trials, state-of-the-art concepts, and new developments in stroke research and patient care. Both primary research papers, reviews of existing literature, and invited editorials, are included. Sharply-focused, single-issue topics, and the latest in clinical research, provide in-depth knowledge.