The Microenvironment of Solid Tumors: Components and Current Challenges of Tumor-on-a-Chip Models.

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING
Ilva de Fátima Souza, João Paulo de Jesus Vieira, Elton Diêgo Bonifácio, Bethânia Alves de Avelar Freitas, Libardo Andres Gonzalez Torres
{"title":"The Microenvironment of Solid Tumors: Components and Current Challenges of Tumor-on-a-Chip Models.","authors":"Ilva de Fátima Souza, João Paulo de Jesus Vieira, Elton Diêgo Bonifácio, Bethânia Alves de Avelar Freitas, Libardo Andres Gonzalez Torres","doi":"10.1089/ten.TEB.2024.0088","DOIUrl":null,"url":null,"abstract":"<p><p>Solid tumors represent the most common type of cancer in humans and are classified into sarcomas, lymphomas, and carcinomas based on the originating cells. Among these, carcinomas, which arise from epithelial and glandular cells lining the body's tissues, are the most prevalent. Around the world, a significant increase in the incidence of solid tumors is observed during recent years. In this context, efforts to discover more effective cancer treatments have led to a deeper understanding of the tumor microenvironment (TME) and its components. Currently, the interactions between cancer cells and elements of the TME are being intensely investigated. Remarkable progress in research is noted, largely owing to the development of advanced <i>in vitro</i> models, such as tumor-on-a-chip models that assist in understanding and ultimately discovering new effective treatments for a specific type of cancer. The purpose of this article is to provide a review of the TME and cancer cell components, along with the advances on tumor-on-a-chip models designed to mimic tumors, offering a perspective on the current state of the art. Recent studies using this kind of microdevices that reproduce the TME have allowed a better understanding of the cancer and its treatments. Nevertheless, current applications of this technology present some limitations that must be overcome to achieve a broad application by researchers looking for a deeper knowledge of cancer and new strategies to improve current therapies.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2024.0088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Solid tumors represent the most common type of cancer in humans and are classified into sarcomas, lymphomas, and carcinomas based on the originating cells. Among these, carcinomas, which arise from epithelial and glandular cells lining the body's tissues, are the most prevalent. Around the world, a significant increase in the incidence of solid tumors is observed during recent years. In this context, efforts to discover more effective cancer treatments have led to a deeper understanding of the tumor microenvironment (TME) and its components. Currently, the interactions between cancer cells and elements of the TME are being intensely investigated. Remarkable progress in research is noted, largely owing to the development of advanced in vitro models, such as tumor-on-a-chip models that assist in understanding and ultimately discovering new effective treatments for a specific type of cancer. The purpose of this article is to provide a review of the TME and cancer cell components, along with the advances on tumor-on-a-chip models designed to mimic tumors, offering a perspective on the current state of the art. Recent studies using this kind of microdevices that reproduce the TME have allowed a better understanding of the cancer and its treatments. Nevertheless, current applications of this technology present some limitations that must be overcome to achieve a broad application by researchers looking for a deeper knowledge of cancer and new strategies to improve current therapies.

实体瘤的微环境:芯片上肿瘤模型的组成和当前挑战。
实体瘤是人类最常见的癌症类型,根据起源细胞可分为肉瘤、淋巴瘤和癌。其中,由人体组织的上皮细胞和腺细胞产生的癌最为常见。近年来,全球实体瘤的发病率大幅上升。在这种情况下,为了找到更有效的癌症治疗方法,人们开始深入了解肿瘤微环境及其组成部分。目前,人们正在深入研究癌细胞与肿瘤微环境因素之间的相互作用。研究取得了显著进展,这主要归功于先进的体外模型的开发,如肿瘤芯片模型,它有助于了解并最终发现针对特定类型癌症的新的有效治疗方法。本文旨在回顾肿瘤微环境和癌细胞成分,以及为模拟肿瘤而设计的片上肿瘤模型的进展,为当前最先进的研究提供一个视角。最近利用这种能再现肿瘤微环境的微型设备进行的研究,让人们对癌症及其治疗有了更好的了解。尽管如此,这项技术目前的应用还存在一些局限性,必须加以克服,才能得到研究人员的广泛应用,从而加深对癌症的认识,并制定新的策略来改善目前的疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信