Regulation of nitro-oxidative homeostasis: an effective approach to enhance salinity tolerance in plants.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Sahana Basu, Gautam Kumar
{"title":"Regulation of nitro-oxidative homeostasis: an effective approach to enhance salinity tolerance in plants.","authors":"Sahana Basu, Gautam Kumar","doi":"10.1007/s00299-024-03275-y","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03275-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.

Abstract Image

调节硝基氧化平衡:提高植物耐盐性的有效方法。
土壤盐碱化是可持续农业生产力的一个主要制约因素,再加上持续不断的气候变 化,可能会对全球粮食安全构成严重威胁。因此,这是一个需要尽快解决的严重问题。活性氧(ROS)和活性氮(RNS)的过度产生和积累是盐胁迫期间发生的关键事件,从而引发植物的硝基氧化胁迫和程序性细胞死亡。然而,关于植物在盐胁迫下的硝基氧化胁迫的不同方面的研究非常零散。植物耐盐碱的能力与其通过非酶和酶抗氧化防御机制维持细胞氧化还原平衡的能力有关。本综述强调了植物体内 ROS 和 RNS 的生成机制,详细评估了如何通过有效清除它们来维持氧化还原平衡。本文的独特之处在于利用公开的芯片数据,对水稻不同发育阶段和组织中参与 ROS 和 RNS 解毒的不同抗氧化酶候选基因进行了表达分析。它强调了利用现代生物技术方法,以不同的抗氧化剂为标记,提高作物的耐盐性。综述还探讨了各种转录因子如何通过激活或抑制应激反应基因的表达来提高植物的耐盐能力。总之,综述深入探讨了缓解植物盐度胁迫的硝基氧化平衡策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信