Francisco Ernesto de Andrade Rêgo Júnior, Edivan Rodrigues de Souza, Monaliza Alves Dos Santos, Lucas Yago de Carvalho Leal, Cíntia Maria Teixeira Lins, Ênio Farias de França E Silva, Martha Katharinne Silva Souza Paulino
{"title":"Nutritional management and physiological responses of <i>Atriplex nummularia</i> Lindl. on the improvement of phytoextraction in salt-affected soil.","authors":"Francisco Ernesto de Andrade Rêgo Júnior, Edivan Rodrigues de Souza, Monaliza Alves Dos Santos, Lucas Yago de Carvalho Leal, Cíntia Maria Teixeira Lins, Ênio Farias de França E Silva, Martha Katharinne Silva Souza Paulino","doi":"10.1080/15226514.2024.2379608","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinity is a significant abiotic stress and poses risks to environmental sustainability. Thus, the improvement of the time for recovering the salt-affect soil is crucial for the phytoextraction process using halophytes plants, especially regarding on nutritional management. We evaluated the responses of <i>Atriplex nummularia</i> Lindl. to nitrogen (N) and phosphorus (P) under different salinity levels. The treatments comprised doses of N (N1 = 80 kg ha<sup>-1</sup>) and P (P1 = 60 kg ha<sup>-1</sup>): (1) without N and P (N0P0) (control); (2) with N and without P (N1P0); (3) without N and with P (N0P1); and (4) with N and P (N1P1) and five levels of electrical conductivity from irrigation water: 0.08, 1.7, 4.8, 8.6, and 12.5 dS m<sup>-1</sup>. The. We evaluated dry biomass of leaves, stems, and roots 93 days after transplantation. We also assessed the leaf and osmotic water potential, the osmotic adjustment, and the nutrient contents (N, P, Na, and K). N application increased 22.3, 17.8, and 32.8% the leaf biomass, stem biomass, and osmotic adjustment, respectively; and consequently, boosts Na extraction in 27.8%. Thus, the time of the phytoextraction process can be improved with N fertilizer at a rate of 80 kg ha<sup>-1</sup>.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2379608","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil salinity is a significant abiotic stress and poses risks to environmental sustainability. Thus, the improvement of the time for recovering the salt-affect soil is crucial for the phytoextraction process using halophytes plants, especially regarding on nutritional management. We evaluated the responses of Atriplex nummularia Lindl. to nitrogen (N) and phosphorus (P) under different salinity levels. The treatments comprised doses of N (N1 = 80 kg ha-1) and P (P1 = 60 kg ha-1): (1) without N and P (N0P0) (control); (2) with N and without P (N1P0); (3) without N and with P (N0P1); and (4) with N and P (N1P1) and five levels of electrical conductivity from irrigation water: 0.08, 1.7, 4.8, 8.6, and 12.5 dS m-1. The. We evaluated dry biomass of leaves, stems, and roots 93 days after transplantation. We also assessed the leaf and osmotic water potential, the osmotic adjustment, and the nutrient contents (N, P, Na, and K). N application increased 22.3, 17.8, and 32.8% the leaf biomass, stem biomass, and osmotic adjustment, respectively; and consequently, boosts Na extraction in 27.8%. Thus, the time of the phytoextraction process can be improved with N fertilizer at a rate of 80 kg ha-1.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.