{"title":"Novel elastomeric spiropyran-doped poly(dimethylsiloxane) optical waveguide for UV sensing.","authors":"Camila Aparecida Zimmermann, Koffi Novignon Amouzou, Dipankar Sengupta, Aashutosh Kumar, Nicole Raymonde Demarquette, Bora Ung","doi":"10.1007/s12200-024-00124-4","DOIUrl":null,"url":null,"abstract":"<p><p>Novel poly(dimethylsiloxane) (PDMS) doped with two different spiropyran derivatives (SP) were investigated as potential candidates for the preparation of elastomeric waveguides with UV-dependent optical properties. First, free-standing films were prepared and evaluated with respect to their photochromic response to UV irradiation. Kinetics, reversibility as well as photofatigue and refractive index of the SP-doped PDMS samples were assessed. Second, SP-doped PDMS waveguides were fabricated and tested as UV sensors by monitoring changes in the transmitted optical power of a visible laser (633 nm). UV sensing was successfully demonstrated by doping PDMS using one spiropyran derivative whose propagation loss was measured as 1.04 dB/cm at 633 nm, and sensitivity estimated at 115% change in transmitted optical power per unit change in UV dose. The decay and recovery time constants were measured at 42 and 107 s, respectively, with an average UV saturation dose of 0.4 J/cm<sup>2</sup>. The prepared waveguides exhibited a reversible and consistent response even under bending. The sensor parameters can be tailored by varying the waveguide length up to 21 cm, and are affected by white light and temperatures up to 70 ℃. This work is relevant to elastomeric optics, smart optical materials, and polymer optical waveguide sensors.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"21"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00124-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Novel poly(dimethylsiloxane) (PDMS) doped with two different spiropyran derivatives (SP) were investigated as potential candidates for the preparation of elastomeric waveguides with UV-dependent optical properties. First, free-standing films were prepared and evaluated with respect to their photochromic response to UV irradiation. Kinetics, reversibility as well as photofatigue and refractive index of the SP-doped PDMS samples were assessed. Second, SP-doped PDMS waveguides were fabricated and tested as UV sensors by monitoring changes in the transmitted optical power of a visible laser (633 nm). UV sensing was successfully demonstrated by doping PDMS using one spiropyran derivative whose propagation loss was measured as 1.04 dB/cm at 633 nm, and sensitivity estimated at 115% change in transmitted optical power per unit change in UV dose. The decay and recovery time constants were measured at 42 and 107 s, respectively, with an average UV saturation dose of 0.4 J/cm2. The prepared waveguides exhibited a reversible and consistent response even under bending. The sensor parameters can be tailored by varying the waveguide length up to 21 cm, and are affected by white light and temperatures up to 70 ℃. This work is relevant to elastomeric optics, smart optical materials, and polymer optical waveguide sensors.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more