Meher Lad , John-Paul Taylor , Timothy D Griffiths
{"title":"The contribution of short-term memory for sound features to speech-in-noise perception and cognition","authors":"Meher Lad , John-Paul Taylor , Timothy D Griffiths","doi":"10.1016/j.heares.2024.109081","DOIUrl":null,"url":null,"abstract":"<div><p>Speech-in-noise (SIN) perception is a fundamental ability that declines with aging, as does general cognition. We assess whether auditory cognitive ability, in particular short-term memory for sound features, contributes to both. We examined how auditory memory for fundamental sound features, the carrier frequency and amplitude modulation rate of modulated white noise, contributes to SIN perception. We assessed SIN in 153 healthy participants with varying degrees of hearing loss using measures that require single-digit perception (the Digits-in-Noise, DIN) and sentence perception (Speech-in-Babble, SIB). Independent variables were auditory memory and a range of other factors including the Pure Tone Audiogram (PTA), a measure of dichotic pitch-in-noise perception (Huggins pitch), and demographic variables including age and sex. Multiple linear regression models were compared using Bayesian Model Comparison. The best predictor model for DIN included PTA and Huggins pitch (r<sup>2</sup> = 0.32, <em>p</em> < 0.001), whereas the model for SIB included the addition of auditory memory for sound features (r<sup>2</sup> = 0.24, <em>p</em> < 0.001). Further analysis demonstrated that auditory memory also explained a significant portion of the variance (28 %) in scores for a screening cognitive test for dementia. Auditory memory for non-speech sounds may therefore provide an important predictor of both SIN and cognitive ability.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"451 ","pages":"Article 109081"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378595524001345/pdfft?md5=4ec2fc673dde7d778d74112c8fe381cb&pid=1-s2.0-S0378595524001345-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524001345","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Speech-in-noise (SIN) perception is a fundamental ability that declines with aging, as does general cognition. We assess whether auditory cognitive ability, in particular short-term memory for sound features, contributes to both. We examined how auditory memory for fundamental sound features, the carrier frequency and amplitude modulation rate of modulated white noise, contributes to SIN perception. We assessed SIN in 153 healthy participants with varying degrees of hearing loss using measures that require single-digit perception (the Digits-in-Noise, DIN) and sentence perception (Speech-in-Babble, SIB). Independent variables were auditory memory and a range of other factors including the Pure Tone Audiogram (PTA), a measure of dichotic pitch-in-noise perception (Huggins pitch), and demographic variables including age and sex. Multiple linear regression models were compared using Bayesian Model Comparison. The best predictor model for DIN included PTA and Huggins pitch (r2 = 0.32, p < 0.001), whereas the model for SIB included the addition of auditory memory for sound features (r2 = 0.24, p < 0.001). Further analysis demonstrated that auditory memory also explained a significant portion of the variance (28 %) in scores for a screening cognitive test for dementia. Auditory memory for non-speech sounds may therefore provide an important predictor of both SIN and cognitive ability.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.