{"title":"“When does human life begin?” teaching human embryology in the context of the American abortion debate","authors":"Scott F. Gilbert","doi":"10.1016/j.ydbio.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>The Dobbs decision of the United States Supreme Court and the actions of several state legislatures have made it risky, if not outright dangerous, to teach factual material concerning human embryology. At some state universities, for instance, if a professor's lecture is felt to teach or discuss abortion (as it might when teaching about tubal pregnancies, hydatidiform moles, or eneuploidy), that instructor risks imprisonment for up to 14 years (Gyori, 2023). Some states' new censorship rules have thus caused professors to drop modules on abortion from numerous science and humanities courses. In most states, instructors can still teach about human embryonic development and not risk putting their careers or livelihoods in jeopardy. However, even in many of these institutions, students can bring a professor to a disciplinary hearing by claiming that the instructor failed to provide ample trigger warnings on such issues. This essay attempts to provide some strategies wherein human embryology and the ethical issues surrounding it might be taught and students may be given resources to counter unscientific falsehoods about fertilization and human development. This essay provides evidence for teaching the following propositions.</p><p>Mis-information about human biology and medicine is rampant on the internet, and there are skills that can be taught to students that will help them determine which sites should trusted. This is a skill that needs to be taught as part of science courses.</p></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"515 ","pages":"Pages 102-111"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160624001830","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Dobbs decision of the United States Supreme Court and the actions of several state legislatures have made it risky, if not outright dangerous, to teach factual material concerning human embryology. At some state universities, for instance, if a professor's lecture is felt to teach or discuss abortion (as it might when teaching about tubal pregnancies, hydatidiform moles, or eneuploidy), that instructor risks imprisonment for up to 14 years (Gyori, 2023). Some states' new censorship rules have thus caused professors to drop modules on abortion from numerous science and humanities courses. In most states, instructors can still teach about human embryonic development and not risk putting their careers or livelihoods in jeopardy. However, even in many of these institutions, students can bring a professor to a disciplinary hearing by claiming that the instructor failed to provide ample trigger warnings on such issues. This essay attempts to provide some strategies wherein human embryology and the ethical issues surrounding it might be taught and students may be given resources to counter unscientific falsehoods about fertilization and human development. This essay provides evidence for teaching the following propositions.
Mis-information about human biology and medicine is rampant on the internet, and there are skills that can be taught to students that will help them determine which sites should trusted. This is a skill that needs to be taught as part of science courses.
期刊介绍:
Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.