Mariia Soloviova, Juan C Beltrán-Vargas, Luis Fernandez de Castro, Juan Belmonte-Beitia, Víctor M Pérez-García, Magdalena Caballero
{"title":"A Mathematical Model for Fibrous Dysplasia: The Role of the Flow of Mutant Cells.","authors":"Mariia Soloviova, Juan C Beltrán-Vargas, Luis Fernandez de Castro, Juan Belmonte-Beitia, Víctor M Pérez-García, Magdalena Caballero","doi":"10.1007/s11538-024-01336-7","DOIUrl":null,"url":null,"abstract":"<p><p>Fibrous dysplasia (FD) is a mosaic non-inheritable genetic disorder of the skeleton in which normal bone is replaced by structurally unsound fibro-osseous tissue. There is no curative treatment for FD, partly because its pathophysiology is not yet fully known. We present a simple mathematical model of the disease incorporating its basic known biology, to gain insight on the dynamics of the involved bone-cell populations, and shed light on its pathophysiology. We develop an analytical study of the model and study its basic properties. The existence and stability of steady states are studied, an analysis of sensitivity on the model parameters is done, and different numerical simulations provide findings in agreement with the analytical results. We discuss the model dynamics match with known facts on the disease, and how some open questions could be addressed using the model.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 9","pages":"108"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01336-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibrous dysplasia (FD) is a mosaic non-inheritable genetic disorder of the skeleton in which normal bone is replaced by structurally unsound fibro-osseous tissue. There is no curative treatment for FD, partly because its pathophysiology is not yet fully known. We present a simple mathematical model of the disease incorporating its basic known biology, to gain insight on the dynamics of the involved bone-cell populations, and shed light on its pathophysiology. We develop an analytical study of the model and study its basic properties. The existence and stability of steady states are studied, an analysis of sensitivity on the model parameters is done, and different numerical simulations provide findings in agreement with the analytical results. We discuss the model dynamics match with known facts on the disease, and how some open questions could be addressed using the model.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.