{"title":"Advancements in Nano-Mandoor Bhasma: Unravelling the Particle Size-Ascorbic Acid Synergy for Enhanced Iron Bioavailability for Anemia Treatment.","authors":"Acharya Balkrishna, Kunal Bhattacharya, Himadri Sekhar Samanta, Meenu Tomer, Anurag Varshney","doi":"10.1007/s12011-024-04304-3","DOIUrl":null,"url":null,"abstract":"<p><p>Mandoor Bhasma (MB) medicine, based on classical Indian Ayurveda, was size- and surface-modified to improve its therapeutic efficiency for treating iron-deficient anemia. Physical grinding reduced the size of MB to the nanoparticle (nano-MB) range without changing its chemical composition, as measured by particle size distribution. The surface of nano-MB was modified with ascorbic acid (nano-AA-MB) and confirmed using scanning electron microscopy and Fourier transformed infrared spectroscopy. Enhanced iron dissolution from the surface-modified nano-AA-MB under neutral-to-alkaline pH conditions, and in the intestinal region of the simulated gastrointestinal tract (GIT) digestion model was determined using inductively coupled plasma mass spectroscopy. GIT digestae of MB microparticles and nano-AA-MB were found to be biocompatible in human colon epithelial (Caco-2) cells, with the latter showing threefold higher iron uptake. Subsequently, a dose-dependent increase in cellular ferritin protein was observed in the nano-AA-MB digestae-treated Caco-2 cells, indicating the enhanced bioavailability and storage of dissolved iron. Overall, the study showed that reducing the size of centuries-old traditional Mandoor Bhasma medicine to nanoscale, and its surface-modification with ascorbic acid would help in enhancing its therapeutic abilities for treating iron-deficient anemia.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"2320-2338"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04304-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mandoor Bhasma (MB) medicine, based on classical Indian Ayurveda, was size- and surface-modified to improve its therapeutic efficiency for treating iron-deficient anemia. Physical grinding reduced the size of MB to the nanoparticle (nano-MB) range without changing its chemical composition, as measured by particle size distribution. The surface of nano-MB was modified with ascorbic acid (nano-AA-MB) and confirmed using scanning electron microscopy and Fourier transformed infrared spectroscopy. Enhanced iron dissolution from the surface-modified nano-AA-MB under neutral-to-alkaline pH conditions, and in the intestinal region of the simulated gastrointestinal tract (GIT) digestion model was determined using inductively coupled plasma mass spectroscopy. GIT digestae of MB microparticles and nano-AA-MB were found to be biocompatible in human colon epithelial (Caco-2) cells, with the latter showing threefold higher iron uptake. Subsequently, a dose-dependent increase in cellular ferritin protein was observed in the nano-AA-MB digestae-treated Caco-2 cells, indicating the enhanced bioavailability and storage of dissolved iron. Overall, the study showed that reducing the size of centuries-old traditional Mandoor Bhasma medicine to nanoscale, and its surface-modification with ascorbic acid would help in enhancing its therapeutic abilities for treating iron-deficient anemia.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.