Development and validation of an electronic health record-based algorithm for identifying TBI in the VA: A VA Million Veteran Program study.

IF 1.5 4区 医学 Q4 NEUROSCIENCES
Brain injury Pub Date : 2024-11-09 Epub Date: 2024-07-14 DOI:10.1080/02699052.2024.2373920
Victoria C Merritt, Alicia W Chen, Clara-Lea Bonzel, Chuan Hong, Rahul Sangar, Sara Morini Sweet, Scott F Sorg, Catherine Chanfreau-Coffinier
{"title":"Development and validation of an electronic health record-based algorithm for identifying TBI in the VA: A VA Million Veteran Program study.","authors":"Victoria C Merritt, Alicia W Chen, Clara-Lea Bonzel, Chuan Hong, Rahul Sangar, Sara Morini Sweet, Scott F Sorg, Catherine Chanfreau-Coffinier","doi":"10.1080/02699052.2024.2373920","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to develop and validate an algorithm for identifying Veterans with a history of traumatic brain injury (TBI) in the Veterans Affairs (VA) electronic health record using VA Million Veteran Program (MVP) data. Manual chart review (<i>n</i> = 200) was first used to establish 'gold standard' diagnosis labels for TBI ('Yes TBI' vs. 'No TBI'). To develop our algorithm, we used PheCAP, a semi-supervised pipeline that relied on the chart review diagnosis labels to train and create a prediction model for TBI. Cross-validation was used to train and evaluate the proposed algorithm, 'TBI-PheCAP.' TBI-PheCAP performance was compared to existing TBI algorithms and phenotyping methods, and the final algorithm was run on all MVP participants (<i>n</i> = 702,740) to assign a predicted probability for TBI and a binary classification status choosing specificity = 90%. The TBI-PheCAP algorithm had an area under the receiver operating characteristic curve of 0.92, sensitivity of 84%, and positive predictive value (PPV) of 98% at specificity = 90%. TBI-PheCAP generally performed better than other classification methods, with equivalent or higher sensitivity and PPV than existing rules-based TBI algorithms and MVP TBI-related survey data. Given its strong classification metrics, the TBI-PheCAP algorithm is recommended for use in future population-based TBI research.</p>","PeriodicalId":9082,"journal":{"name":"Brain injury","volume":" ","pages":"1084-1092"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain injury","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02699052.2024.2373920","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study was to develop and validate an algorithm for identifying Veterans with a history of traumatic brain injury (TBI) in the Veterans Affairs (VA) electronic health record using VA Million Veteran Program (MVP) data. Manual chart review (n = 200) was first used to establish 'gold standard' diagnosis labels for TBI ('Yes TBI' vs. 'No TBI'). To develop our algorithm, we used PheCAP, a semi-supervised pipeline that relied on the chart review diagnosis labels to train and create a prediction model for TBI. Cross-validation was used to train and evaluate the proposed algorithm, 'TBI-PheCAP.' TBI-PheCAP performance was compared to existing TBI algorithms and phenotyping methods, and the final algorithm was run on all MVP participants (n = 702,740) to assign a predicted probability for TBI and a binary classification status choosing specificity = 90%. The TBI-PheCAP algorithm had an area under the receiver operating characteristic curve of 0.92, sensitivity of 84%, and positive predictive value (PPV) of 98% at specificity = 90%. TBI-PheCAP generally performed better than other classification methods, with equivalent or higher sensitivity and PPV than existing rules-based TBI algorithms and MVP TBI-related survey data. Given its strong classification metrics, the TBI-PheCAP algorithm is recommended for use in future population-based TBI research.

开发和验证基于电子健康记录的算法,用于识别退伍军人事务部的创伤性脑损伤:退伍军人事务部百万退伍军人计划研究。
本研究的目的是利用退伍军人事务部 (VA) 的百万退伍军人计划 (MVP) 数据,开发并验证一种算法,用于在退伍军人事务部 (VA) 电子健康记录中识别有创伤性脑损伤 (TBI) 病史的退伍军人。首先使用人工病历审查(n = 200)来确定 TBI 的 "金标准 "诊断标签("有 TBI "与 "无 TBI")。为了开发算法,我们使用了 PheCAP,这是一个半监督管道,依靠病历审查诊断标签来训练和创建 TBI 预测模型。我们将 TBI-PheCAP 的性能与现有的 TBI 算法和表型方法进行了比较,并在所有 MVP 参与者(n = 702,740 人)上运行了最终算法,以分配 TBI 的预测概率和选择特异性 = 90% 的二元分类状态。TBI-PheCAP 算法的接收者工作特征曲线下面积为 0.92,灵敏度为 84%,特异性 = 90% 时的阳性预测值 (PPV) 为 98%。TBI-PheCAP 的表现普遍优于其他分类方法,其灵敏度和 PPV 与现有的基于规则的 TBI 算法和 MVP TBI 相关调查数据相当或更高。鉴于其强大的分类指标,建议在未来基于人群的 TBI 研究中使用 TBI-PheCAP 算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain injury
Brain injury 医学-康复医学
CiteScore
3.50
自引率
5.30%
发文量
148
审稿时长
12 months
期刊介绍: Brain Injury publishes critical information relating to research and clinical practice, adult and pediatric populations. The journal covers a full range of relevant topics relating to clinical, translational, and basic science research. Manuscripts address emergency and acute medical care, acute and post-acute rehabilitation, family and vocational issues, and long-term supports. Coverage includes assessment and interventions for functional, communication, neurological and psychological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信