{"title":"A stepwise surface ionization method for ion mobility spectrometry","authors":"Jianhua Lin, Xiaoguang Gao, Jian Jia, Xiuli He","doi":"10.1002/rcm.9862","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Rationale</h3>\n \n <p>The detection of organic nitrogen compounds in exhaled breath is expected to provide an early warning of diseases such as kidney disease. Detecting these trace disease markers in exhaled breath with complex composition and high moisture content is a challenge. Surface ionization (SI) shows a highly selective ionization of organic nitrogen compounds, and it is a good candidate for breath analysis combined with ion mobility spectrometry (IMS).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A stepwise SI method of low-temperature adsorption/high-temperature ionization was proposed, and trimethylamine (TMA) was detected when combined with an ion mobility spectrometer. TMA at different concentrations and humidity levels and spiked in human breath was detected to evaluate the method's properties.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>TMA with concentrations from 2 to 200 ppb was detected. The peak intensity of the TMA characteristic ions was linearly related to the “e” exponent of the concentration with a curve fit of 0.996. A standard deviation of less than 0.306% was obtained with 10 replicate analyses of 10 ppb TMA. The signal intensity difference between dry and wet (relative humidity > 93%) TMA samples is only 2.7%, and the recovery rate of the sample was 106.819%.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>SI-IMS based on the stepwise SI method has the advantages of low ionization temperature, high detection sensitivity, strong resistance to humidity interference, and good repeatability. It is a promising method for detecting organic nitrogen compounds in exhaled breath.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"38 18","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9862","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale
The detection of organic nitrogen compounds in exhaled breath is expected to provide an early warning of diseases such as kidney disease. Detecting these trace disease markers in exhaled breath with complex composition and high moisture content is a challenge. Surface ionization (SI) shows a highly selective ionization of organic nitrogen compounds, and it is a good candidate for breath analysis combined with ion mobility spectrometry (IMS).
Methods
A stepwise SI method of low-temperature adsorption/high-temperature ionization was proposed, and trimethylamine (TMA) was detected when combined with an ion mobility spectrometer. TMA at different concentrations and humidity levels and spiked in human breath was detected to evaluate the method's properties.
Results
TMA with concentrations from 2 to 200 ppb was detected. The peak intensity of the TMA characteristic ions was linearly related to the “e” exponent of the concentration with a curve fit of 0.996. A standard deviation of less than 0.306% was obtained with 10 replicate analyses of 10 ppb TMA. The signal intensity difference between dry and wet (relative humidity > 93%) TMA samples is only 2.7%, and the recovery rate of the sample was 106.819%.
Conclusions
SI-IMS based on the stepwise SI method has the advantages of low ionization temperature, high detection sensitivity, strong resistance to humidity interference, and good repeatability. It is a promising method for detecting organic nitrogen compounds in exhaled breath.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.