Highly stable energy-storage performance of donor-acceptor co-doped TiO2 films

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Highly stable energy-storage performance of donor-acceptor co-doped TiO2 films","authors":"","doi":"10.1016/j.materresbull.2024.112993","DOIUrl":null,"url":null,"abstract":"<div><p>Energy-storage films that remain stable at high temperatures and frequencies are crucial for various applications. In this study, we demonstrated that donor-acceptor co-doped simple oxide TiO<sub>2</sub> films, viz. V<sup>5+</sup>-Cr<sup>3+</sup> co-doped TiO<sub>2</sub> [(V<sub>0.5</sub>Cr<sub>0.5</sub>)<em><sub>x</sub></em>Ti<sub>1-</sub><em><sub>x</sub></em>O<sub>2</sub>] films, can exhibit highly stable energy-storage performance. The co-doped TiO<sub>2</sub> films exhibited high breakdown strength and polarization owing to the local polarization induced by the V<sup>5+</sup>-Cr<sup>3+</sup> ionic pairs. The energy-storage density of the (V<sub>0.5</sub>Cr<sub>0.5</sub>)<sub>0.02</sub>Ti<sub>0.98</sub>O<sub>2</sub> film was approximately 48.93 J/cm<sup>3</sup> at room temperature, which is approximately 195 times higher than that of the pure TiO<sub>2</sub> film (0.25 J/cm<sup>3</sup>). In addition, the (V<sub>0.5</sub>Cr<sub>0.5</sub>)<sub>0.02</sub>Ti<sub>0.98</sub>O<sub>2</sub> film exhibited excellent temperature stability from 303 K to 403 K, frequency stability from 0.5 kHz to 7.5 kHz, and fatigue durability over 10<sup>7</sup> charge-discharge cycles. The proposed strategy can effectively improve the stable energy-storage performance of lead-free donor-acceptor co-doped TiO<sub>2</sub> films, which are in high demand in various applications.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824003246","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy-storage films that remain stable at high temperatures and frequencies are crucial for various applications. In this study, we demonstrated that donor-acceptor co-doped simple oxide TiO2 films, viz. V5+-Cr3+ co-doped TiO2 [(V0.5Cr0.5)xTi1-xO2] films, can exhibit highly stable energy-storage performance. The co-doped TiO2 films exhibited high breakdown strength and polarization owing to the local polarization induced by the V5+-Cr3+ ionic pairs. The energy-storage density of the (V0.5Cr0.5)0.02Ti0.98O2 film was approximately 48.93 J/cm3 at room temperature, which is approximately 195 times higher than that of the pure TiO2 film (0.25 J/cm3). In addition, the (V0.5Cr0.5)0.02Ti0.98O2 film exhibited excellent temperature stability from 303 K to 403 K, frequency stability from 0.5 kHz to 7.5 kHz, and fatigue durability over 107 charge-discharge cycles. The proposed strategy can effectively improve the stable energy-storage performance of lead-free donor-acceptor co-doped TiO2 films, which are in high demand in various applications.

Abstract Image

Abstract Image

供体-受体共掺杂二氧化钛薄膜的高稳定储能性能
在高温和高频条件下保持稳定的储能薄膜对各种应用都至关重要。在这项研究中,我们证明了供体-受体共掺杂简单氧化物 TiO 薄膜,即 V-Cr 共掺杂 TiO [(VCr)TiO] 薄膜,可以表现出高度稳定的储能性能。由于 V-Cr 离子对引起的局部极化,共掺杂 TiO 薄膜表现出较高的击穿强度和极化。室温下,(VCr)TiO 薄膜的储能密度约为 48.93 J/cm,是纯 TiO 薄膜(0.25 J/cm)的约 195 倍。此外,(VCr)TiO 薄膜在 303 K 至 403 K 的温度稳定性、0.5 kHz 至 7.5 kHz 的频率稳定性以及 10 次充放电循环的疲劳耐久性方面均表现优异。所提出的策略能有效提高无铅供体-受体共掺杂 TiO 薄膜的稳定储能性能,而这种薄膜在各种应用中都有很高的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信