Heena Rani, Rachana D. Bhardwaj, Satvir Kaur Grewal, Simarjit Kaur
{"title":"Exploring the variation in α-amylase activity and thermostability in green malt of diverse barley (Hordeum vulgare L.) germplasm","authors":"Heena Rani, Rachana D. Bhardwaj, Satvir Kaur Grewal, Simarjit Kaur","doi":"10.1007/s13562-024-00902-3","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the activity and thermostability of α-amylase in green malt across a diverse panel of 54 barley genotypes, comprising 20 mutants, 19 hulled, 4 hulless, and 11 wild types, using starch as a substrate. The primary objective was to assess the variability in α-amylase activity among these genotypes and identify those with superior enzymatic activity and thermostability. Given that α-amylase is the most thermostable enzyme among the diastatic power enzymes yet exhibits significant activity reduction above 72.5 °C, a threshold frequently exceeded in industrial kilning and mashing. This research is therefore crucial for identifying genotypes that could enhance starch hydrolysis efficiency during mashing, a process critically dependent on sufficient enzymatic activity. We reported α-amylase activity and thermostability across a temperature range of 37 to 85 °C. The findings indicated that optimal temperature for α-amylase activity in barley malting lies between 65 and 75 °C. Interestingly, wild barley genotypes demonstrated the highest mean α-amylase activity, while hulless varieties exhibited the lowest. These results were validated by a significant negative correlation between α-amylase activity and the content of starch. Among the 54 genotypes, 11 displayed high α-amylase activity at 65 °C. Furthermore, one mutant (BL2105) and one wild genotype (WS230) exhibited high activity and thermostability at 75 °C, and another wild genotype (WS236) retained 30% of its original activity after heat treatment at 85 °C. These genotypes with enhanced α-amylase activity and thermostability could be strategically exploited in breeding programs to develop superior malt varieties. Such advancements could significantly enhance both malt quality and efficiency in beer production industry.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00902-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the activity and thermostability of α-amylase in green malt across a diverse panel of 54 barley genotypes, comprising 20 mutants, 19 hulled, 4 hulless, and 11 wild types, using starch as a substrate. The primary objective was to assess the variability in α-amylase activity among these genotypes and identify those with superior enzymatic activity and thermostability. Given that α-amylase is the most thermostable enzyme among the diastatic power enzymes yet exhibits significant activity reduction above 72.5 °C, a threshold frequently exceeded in industrial kilning and mashing. This research is therefore crucial for identifying genotypes that could enhance starch hydrolysis efficiency during mashing, a process critically dependent on sufficient enzymatic activity. We reported α-amylase activity and thermostability across a temperature range of 37 to 85 °C. The findings indicated that optimal temperature for α-amylase activity in barley malting lies between 65 and 75 °C. Interestingly, wild barley genotypes demonstrated the highest mean α-amylase activity, while hulless varieties exhibited the lowest. These results were validated by a significant negative correlation between α-amylase activity and the content of starch. Among the 54 genotypes, 11 displayed high α-amylase activity at 65 °C. Furthermore, one mutant (BL2105) and one wild genotype (WS230) exhibited high activity and thermostability at 75 °C, and another wild genotype (WS236) retained 30% of its original activity after heat treatment at 85 °C. These genotypes with enhanced α-amylase activity and thermostability could be strategically exploited in breeding programs to develop superior malt varieties. Such advancements could significantly enhance both malt quality and efficiency in beer production industry.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.