Gradient-Interpenetrating Polymer Networks in 3D Printed Lattices for Tunable and Enhanced Energy Absorption

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kathleen L. Sampson, Hao Li, Kurtis Laqua, Derek Aranguren van Egmond, Laura E. Dickson, Julieta Barroeta Robles, Justin Lamouche, Aria Guthrie, Behnam Ashrafi, Shan Zou, Maohui Chen, Joshua Bell, Chantal Paquet
{"title":"Gradient-Interpenetrating Polymer Networks in 3D Printed Lattices for Tunable and Enhanced Energy Absorption","authors":"Kathleen L. Sampson,&nbsp;Hao Li,&nbsp;Kurtis Laqua,&nbsp;Derek Aranguren van Egmond,&nbsp;Laura E. Dickson,&nbsp;Julieta Barroeta Robles,&nbsp;Justin Lamouche,&nbsp;Aria Guthrie,&nbsp;Behnam Ashrafi,&nbsp;Shan Zou,&nbsp;Maohui Chen,&nbsp;Joshua Bell,&nbsp;Chantal Paquet","doi":"10.1002/admt.202400403","DOIUrl":null,"url":null,"abstract":"<p>3D printing provides the potential to enhance mechanical properties by fabricating complex structures with diverse materials; however, most high-resolution 3D printing techniques require custom printers to incorporate multiple materials and/or result in poor material interfacial bonding. Here, energy absorption properties are enhanced with 3D lattice structures fabricated via vat photopolymerization comprising multiple materials forming a gradient-interpenetrating polymer network (gradient-IPN). The gradient-IPN is incorporated by swelling the 3D printed elastomeric lattice in a photoresin that yields a stiff shell-soft core structure. This straightforward post-3D printing technique delivers an unprecedented degree of structural property customization through polymer gradients in lattice struts with shells of tunable stiffness and flexible elastomeric cores to achieve a broad continuum spectrum of mechanical properties within one simple system. The gradient aids in the distribution of stress and limits fracture between materials typically observed in multimaterial lattices. The gradient-IPN lattices are fully recoverable and exhibit over 4 to 33 times higher toughness after compression, compared to copolymer (same composition as the gradient-IPN) or purely elastomeric lattices, respectively. This highly versatile approach to modifying 3D printed lattices yields the unique combination of load bearing capabilities with viscoelasticity desirable for high performance materials in impact protection.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 22","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400403","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400403","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

3D printing provides the potential to enhance mechanical properties by fabricating complex structures with diverse materials; however, most high-resolution 3D printing techniques require custom printers to incorporate multiple materials and/or result in poor material interfacial bonding. Here, energy absorption properties are enhanced with 3D lattice structures fabricated via vat photopolymerization comprising multiple materials forming a gradient-interpenetrating polymer network (gradient-IPN). The gradient-IPN is incorporated by swelling the 3D printed elastomeric lattice in a photoresin that yields a stiff shell-soft core structure. This straightforward post-3D printing technique delivers an unprecedented degree of structural property customization through polymer gradients in lattice struts with shells of tunable stiffness and flexible elastomeric cores to achieve a broad continuum spectrum of mechanical properties within one simple system. The gradient aids in the distribution of stress and limits fracture between materials typically observed in multimaterial lattices. The gradient-IPN lattices are fully recoverable and exhibit over 4 to 33 times higher toughness after compression, compared to copolymer (same composition as the gradient-IPN) or purely elastomeric lattices, respectively. This highly versatile approach to modifying 3D printed lattices yields the unique combination of load bearing capabilities with viscoelasticity desirable for high performance materials in impact protection.

Abstract Image

Abstract Image

三维打印晶格中的梯度互穿聚合物网络可实现可调节的增强型能量吸收
三维打印技术可通过使用不同材料制造复杂结构来提高机械性能;然而,大多数高分辨率三维打印技术都需要定制打印机来整合多种材料和/或导致材料界面粘合不良。在这里,通过大桶光聚合制造的三维晶格结构增强了能量吸收性能,该结构由多种材料组成,形成梯度互穿聚合物网络(梯度-IPN)。梯度-IPN 是通过在光敏树脂中溶胀三维打印的弹性晶格而形成的,这种溶胀会产生硬壳-软核结构。这种直接的后三维打印技术通过聚合物梯度在晶格支柱中实现了前所未有的结构特性定制,晶格支柱具有可调刚度的外壳和柔韧的弹性内核,从而在一个简单的系统中实现了广泛的连续机械特性。梯度有助于应力分布,并限制了多材料晶格中常见的材料间断裂。与共聚物(成分与梯度-IPN 相同)或纯弹性体晶格相比,梯度-IPN 晶格可完全恢复,压缩后的韧性分别高出 4 至 33 倍。这种对 3D 打印晶格进行改性的方法用途非常广泛,可将承载能力与粘弹性独特地结合在一起,是抗冲击保护领域高性能材料的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信