Intelligent Extraction of Surface Cracks on LNG Outer Tanks Based on Close-Range Image Point Clouds and Infrared Imagery

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Ming Guo, Li Zhu, Youshan Zhao, Xingyu Tang, Kecai Guo, Yanru Shi, Liping Han
{"title":"Intelligent Extraction of Surface Cracks on LNG Outer Tanks Based on Close-Range Image Point Clouds and Infrared Imagery","authors":"Ming Guo,&nbsp;Li Zhu,&nbsp;Youshan Zhao,&nbsp;Xingyu Tang,&nbsp;Kecai Guo,&nbsp;Yanru Shi,&nbsp;Liping Han","doi":"10.1007/s10921-024-01103-7","DOIUrl":null,"url":null,"abstract":"<p>Most of the studies on oil tanks have focused on the analysis of deformation and settlement, and more research needs to be done on crack extraction from external LNG tanks.</p><p>Oil tanks are more sensitive to temperature due to the lower temperature inside the tank. Using infrared images as a dataset for crack recognition can identify cracks that the naked eye cannot see, and a convolutional neural network that introduces a channel attention mechanism is used for crack recognition with a recognition accuracy of 85.9%.</p><p>The automatic extraction of three-dimensional (3D) crack point clouds using depth images is novel and accurate, with an accuracy of about 97.6%.</p>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01103-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the studies on oil tanks have focused on the analysis of deformation and settlement, and more research needs to be done on crack extraction from external LNG tanks.

Oil tanks are more sensitive to temperature due to the lower temperature inside the tank. Using infrared images as a dataset for crack recognition can identify cracks that the naked eye cannot see, and a convolutional neural network that introduces a channel attention mechanism is used for crack recognition with a recognition accuracy of 85.9%.

The automatic extraction of three-dimensional (3D) crack point clouds using depth images is novel and accurate, with an accuracy of about 97.6%.

Abstract Image

Abstract Image

基于近距离图像点云和红外图像的液化天然气外罐表面裂缝智能提取技术
对油罐的研究大多集中在变形和沉降的分析上,而对液化天然气罐外部裂纹的提取还需要做更多的研究。由于罐内温度较低,油罐对温度更加敏感。利用红外图像作为裂纹识别的数据集,可以识别出肉眼无法看到的裂纹,并利用引入通道注意机制的卷积神经网络进行裂纹识别,识别准确率达到 85.9%。利用深度图像自动提取三维(3D)裂纹点云的方法新颖而准确,准确率约为 97.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信