Minkowski content estimates for generic area minimizing hypersurfaces

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xuanyu Li
{"title":"Minkowski content estimates for generic area minimizing hypersurfaces","authors":"Xuanyu Li","doi":"10.1007/s00526-024-02791-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Gamma \\)</span> be a smooth, closed, oriented, <span>\\((n-1)\\)</span>-dimensional submanifold of <span>\\(\\mathbb {R}^{n+1}\\)</span>. It was shown by Chodosh–Mantoulidis–Schulze [6] that one can perturb <span>\\(\\Gamma \\)</span> to a nearby <span>\\(\\Gamma '\\)</span> such that all minimizing currents with boundary <span>\\(\\Gamma '\\)</span> are smooth away from a set with Hausdorff dimension less than <span>\\(n-9\\)</span>. We prove that the perturbation can be made such that the singular set of the minimizing current with boundary <span>\\(\\Gamma '\\)</span> has Minkowski dimension less than <span>\\(n-9\\)</span>.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02791-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Gamma \) be a smooth, closed, oriented, \((n-1)\)-dimensional submanifold of \(\mathbb {R}^{n+1}\). It was shown by Chodosh–Mantoulidis–Schulze [6] that one can perturb \(\Gamma \) to a nearby \(\Gamma '\) such that all minimizing currents with boundary \(\Gamma '\) are smooth away from a set with Hausdorff dimension less than \(n-9\). We prove that the perturbation can be made such that the singular set of the minimizing current with boundary \(\Gamma '\) has Minkowski dimension less than \(n-9\).

一般面积最小超曲面的闵科夫斯基内容估计值
让 \(\Gamma \)是 \(\mathbb {R}^{n+1}\) 的一个光滑、封闭、定向、((n-1)\)维的子满面。Chodosh-Mantoulidis-Schulze [6]证明,我们可以扰动\(\Gamma \)到附近的\(\Gamma '\),使得所有边界为\(\Gamma '\)的最小化流都平滑地远离一个豪斯多夫维度小于\(n-9\)的集合。我们证明,扰动可以使得边界为 (\Gamma '\)的最小化电流的奇异集合的闵科夫斯基维度小于 (n-9)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信