In Situ Growth of Hierarchical Silver Sub-Nanosheets on Zinc Nanosheets-Based Hollow Fiber Gas-Diffusion Electrodes for Electrochemical CO2 Reduction to CO
Guoliang Chen, Lei Ge, Yizhu Kuang, Hesamoddin Rabiee, Beibei Ma, Fatereh Dorosti, Ashok Kumar Nanjundan, Zhonghua Zhu, Hao Wang
{"title":"In Situ Growth of Hierarchical Silver Sub-Nanosheets on Zinc Nanosheets-Based Hollow Fiber Gas-Diffusion Electrodes for Electrochemical CO2 Reduction to CO","authors":"Guoliang Chen, Lei Ge, Yizhu Kuang, Hesamoddin Rabiee, Beibei Ma, Fatereh Dorosti, Ashok Kumar Nanjundan, Zhonghua Zhu, Hao Wang","doi":"10.1002/smsc.202400184","DOIUrl":null,"url":null,"abstract":"Electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) is an effective strategy to mitigate carbon emission effects and store renewable electricity in value-added feedstocks, but it still suffers low production rate and current density. A nanostructured catalyst offers opportunities to enhance CO<sub>2</sub>RR activity by contributing numerous active sites and promoting charge transfer. Herein, a Cu hollow fiber gas diffusion electrode (HFGDE) with silver sub-nanosheets on a zinc nanosheet structure to produce CO is reported. Compared to the HFGDE only possessed zinc nanosheet structure, the as-prepared HFGDE with hierarchical sub-nano AgZn bimetal nanosheets exhibits a twice-partial current density of CO and a CO production rate at the applied potential −1.3 V (versus reversible hydrogen electrode). The unique Ag sub-nanosheets interconnected Zn nanosheets provide multiple charge transfer channels, and the synergistic effect between Ag and Zn improves the adsorption binding energy of COOH* intermediate, resulting in a lower charge transfer resistance and fast CO<sub>2</sub>RR kinetics to produce CO. This research demonstrates the high potential of nanoengineering electrocatalysts for HFGDE to achieve highly efficient CO<sub>2</sub> reduction.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"25 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical reduction of CO2 (CO2RR) is an effective strategy to mitigate carbon emission effects and store renewable electricity in value-added feedstocks, but it still suffers low production rate and current density. A nanostructured catalyst offers opportunities to enhance CO2RR activity by contributing numerous active sites and promoting charge transfer. Herein, a Cu hollow fiber gas diffusion electrode (HFGDE) with silver sub-nanosheets on a zinc nanosheet structure to produce CO is reported. Compared to the HFGDE only possessed zinc nanosheet structure, the as-prepared HFGDE with hierarchical sub-nano AgZn bimetal nanosheets exhibits a twice-partial current density of CO and a CO production rate at the applied potential −1.3 V (versus reversible hydrogen electrode). The unique Ag sub-nanosheets interconnected Zn nanosheets provide multiple charge transfer channels, and the synergistic effect between Ag and Zn improves the adsorption binding energy of COOH* intermediate, resulting in a lower charge transfer resistance and fast CO2RR kinetics to produce CO. This research demonstrates the high potential of nanoengineering electrocatalysts for HFGDE to achieve highly efficient CO2 reduction.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.