Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2

IF 6.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Imran Khan, Jisang Hong
{"title":"Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2","authors":"Imran Khan, Jisang Hong","doi":"10.1007/s11467-024-1424-5","DOIUrl":null,"url":null,"abstract":"<p>In spintronics, transverse anomalous transport properties have emerged as a highly promising avenue surpassing the conventional longitudinal transport behaviors. Here, we explore the transverse transport properties of monolayer and bilayer Fe<sub>3−<i>x</i></sub>Co<sub><i>x</i></sub>GaTe<sub>2</sub> (<i>x</i> = 0.083, 0.167, 0.250, and 0.330) systems. All the systems exhibit ferromagnetic ground states with metallic features and also have perpendicular magnetic anisotropy. Besides, the magnetic anisotropy is substantially enhanced with increasing Co-doping concentration. However, unlike magnetic anisotropy, the Curie temperature is suppressed by increasing the Co-doping concentration. For instance, the monolayer and bilayer Fe<sub>2.917</sub>Co<sub>0.083</sub>GaTe<sub>2</sub> hold a Curie temperature of 253 K and 269 K, which decreases to 163 K and 173 K in monolayer and bilayer Fe<sub>2.67</sub>Co<sub>0.33</sub>GaTe<sub>2</sub> systems, respectively. We find a giant anomalous Nernst conductivity (ANC) of 6.03 A/(K·m) in the monolayer Fe<sub>2.917</sub>Co<sub>0.083</sub>GaTe<sub>2</sub> at −30 meV, and this is further enhanced to 11.30 A/(K·m) in the bilayer Fe<sub>2.917</sub>Co<sub>0.083</sub>GaTe<sub>2</sub> at −20 meV. Moreover, the bilayer Fe<sub>2.917</sub>Co<sub>0.083</sub>GaTe<sub>2</sub> structure has a large anomalous thermal Hall conductivity (ATHC) of −0.14 W/(K·m) at 100 K. Overall, we find that the Fe<sub>3−<i>x</i></sub>Co<sub><i>x</i></sub>GaTe<sub>2</sub> (<i>x</i> = 0.083, 0.167, 0.250, and 0.330) structures have better anomalous transverse transport performance than the pristine Fe<sub>3</sub>GaTe<sub>2</sub> system and can be used for potential spintronics and spin caloritronics applications.</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11467-024-1424-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In spintronics, transverse anomalous transport properties have emerged as a highly promising avenue surpassing the conventional longitudinal transport behaviors. Here, we explore the transverse transport properties of monolayer and bilayer Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) systems. All the systems exhibit ferromagnetic ground states with metallic features and also have perpendicular magnetic anisotropy. Besides, the magnetic anisotropy is substantially enhanced with increasing Co-doping concentration. However, unlike magnetic anisotropy, the Curie temperature is suppressed by increasing the Co-doping concentration. For instance, the monolayer and bilayer Fe2.917Co0.083GaTe2 hold a Curie temperature of 253 K and 269 K, which decreases to 163 K and 173 K in monolayer and bilayer Fe2.67Co0.33GaTe2 systems, respectively. We find a giant anomalous Nernst conductivity (ANC) of 6.03 A/(K·m) in the monolayer Fe2.917Co0.083GaTe2 at −30 meV, and this is further enhanced to 11.30 A/(K·m) in the bilayer Fe2.917Co0.083GaTe2 at −20 meV. Moreover, the bilayer Fe2.917Co0.083GaTe2 structure has a large anomalous thermal Hall conductivity (ATHC) of −0.14 W/(K·m) at 100 K. Overall, we find that the Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) structures have better anomalous transverse transport performance than the pristine Fe3GaTe2 system and can be used for potential spintronics and spin caloritronics applications.

Abstract Image

掺杂 Co 的二维 Fe3GaTe2 的巨型反常横向输运特性
在自旋电子学中,横向反常输运特性已成为超越传统纵向输运行为的极有前途的途径。在这里,我们探讨了单层和双层 Fe3-xCoxGaTe2 (x = 0.083、0.167、0.250 和 0.330)系统的横向传输特性。所有系统都呈现出具有金属特征的铁磁基态,并且具有垂直磁各向异性。此外,随着钴掺杂浓度的增加,磁各向异性也大大增强。然而,与磁各向异性不同的是,居里温度会随着 Co 掺杂浓度的增加而受到抑制。例如,单层和双层 Fe2.917Co0.083GaTe2 的居里温度分别为 253 K 和 269 K,而单层和双层 Fe2.67Co0.33GaTe2 系统的居里温度则分别降至 163 K 和 173 K。我们发现单层 Fe2.917Co0.083GaTe2 在零下 30 meV 时的巨大异常 Nernst 电导率 (ANC) 为 6.03 A/(K-m),而双层 Fe2.917Co0.083GaTe2 在零下 20 meV 时的异常 Nernst 电导率 (ANC) 进一步提高到 11.30 A/(K-m)。总之,我们发现 Fe3-xCoxGaTe2(x = 0.083、0.167、0.250 和 0.330)结构比原始 Fe3GaTe2 系统具有更好的反常横向传输性能,可用于潜在的自旋电子学和自旋热电子学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Physics
Frontiers of Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
9.20
自引率
9.30%
发文量
898
审稿时长
6-12 weeks
期刊介绍: Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include: Quantum computation and quantum information Atomic, molecular, and optical physics Condensed matter physics, material sciences, and interdisciplinary research Particle, nuclear physics, astrophysics, and cosmology The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信