{"title":"Efficient Tensor-Product Spectral-Element Operators with the Summation-by-Parts Property on Curved Triangles and Tetrahedra","authors":"Tristan Montoya, David W. Zingg","doi":"10.1137/23m1573963","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2270-A2297, August 2024. <br/> Abstract. We present an extension of the summation-by-parts (SBP) framework to tensor-product spectral-element operators in collapsed coordinates. The proposed approach enables the construction of provably stable discretizations of arbitrary order which combine the geometric flexibility of unstructured triangular and tetrahedral meshes with the efficiency of sum-factorization algorithms. Specifically, a methodology is developed for constructing triangular and tetrahedral spectral-element operators of any order which possess the SBP property (i.e., satisfying a discrete analogue of integration by parts) as well as a tensor-product decomposition. Such operators are then employed within the context of discontinuous spectral-element methods based on nodal expansions collocated at the tensor-product quadrature nodes as well as modal expansions employing Proriol–Koornwinder–Dubiner polynomials, the latter approach resolving the time step limitation associated with the singularity of the collapsed coordinate transformation. Energy-stable formulations for curvilinear meshes are obtained using a skew-symmetric splitting of the metric terms, and a weight-adjusted approximation is used to efficiently invert the curvilinear modal mass matrix. The proposed schemes are compared to those using nontensorial multidimensional SBP operators and are found to offer comparable accuracy to such schemes in the context of smooth linear advection problems on curved meshes, but at a reduced computational cost for higher polynomial degrees. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and Data Available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/tristanmontoya/ReproduceSBPSimplex and in the supplementary materials (reproducibility_repository.zip [35.7MB]).","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1573963","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2270-A2297, August 2024. Abstract. We present an extension of the summation-by-parts (SBP) framework to tensor-product spectral-element operators in collapsed coordinates. The proposed approach enables the construction of provably stable discretizations of arbitrary order which combine the geometric flexibility of unstructured triangular and tetrahedral meshes with the efficiency of sum-factorization algorithms. Specifically, a methodology is developed for constructing triangular and tetrahedral spectral-element operators of any order which possess the SBP property (i.e., satisfying a discrete analogue of integration by parts) as well as a tensor-product decomposition. Such operators are then employed within the context of discontinuous spectral-element methods based on nodal expansions collocated at the tensor-product quadrature nodes as well as modal expansions employing Proriol–Koornwinder–Dubiner polynomials, the latter approach resolving the time step limitation associated with the singularity of the collapsed coordinate transformation. Energy-stable formulations for curvilinear meshes are obtained using a skew-symmetric splitting of the metric terms, and a weight-adjusted approximation is used to efficiently invert the curvilinear modal mass matrix. The proposed schemes are compared to those using nontensorial multidimensional SBP operators and are found to offer comparable accuracy to such schemes in the context of smooth linear advection problems on curved meshes, but at a reduced computational cost for higher polynomial degrees. Reproducibility of computational results. This paper has been awarded the “SIAM Reproducibility Badge: Code and Data Available” as a recognition that the authors have followed reproducibility principles valued by SISC and the scientific computing community. Code and data that allow readers to reproduce the results in this paper are available at https://github.com/tristanmontoya/ReproduceSBPSimplex and in the supplementary materials (reproducibility_repository.zip [35.7MB]).