Eloisa Vendemiatti, Lillian Nowack, Lazaro Eustáquio Pereira Peres, Vagner A. Benedito, Craig A. Schenck
{"title":"Sticky business: the intricacies of acylsugar biosynthesis in the Solanaceae","authors":"Eloisa Vendemiatti, Lillian Nowack, Lazaro Eustáquio Pereira Peres, Vagner A. Benedito, Craig A. Schenck","doi":"10.1007/s11101-024-09996-y","DOIUrl":null,"url":null,"abstract":"<p>Plants display tremendous chemical diversity. Like all organisms, they possess a core set of metabolites for growth and development. However, plants are notorious for their specialized chemical repertoire. Biologically active specialized metabolites enable plants to interact with their environment and provide humans with diverse medicines. Specialized metabolites are derived from core metabolites, often using enzymes that evolved from core pathways in a lineage-specific manner. Biochemical understanding of plant specialized metabolic pathways provides insight into the evolutionary origins of chemical diversity and tools for engineering the production of biologically active metabolites. Acylsugars are a class of specialized metabolites occurring widely in the Solanaceae and other plant families where they contribute to fitness. Although assembled from simple core metabolic precursors, sugars and acyl chains, tremendous acylsugar structural diversity is observed across the Solanaceae family. Enzymes that catalyze the esterification of acyl chains to sugar cores have been well characterized from phylogenetically diverse species, and their biochemical diversity contributes to acylsugar structural variation. The upstream metabolic pathways that provide the acyl chain precursors also contribute to acylsugar structural variation. Yet, biochemical and genetic understanding of these upstream biosynthetic pathways is less well known. Here, we focus on recent advances in acyl chain biosynthesis and elongation pathways, the subcellular distribution of acylsugar biosynthesis, and how biochemical innovations in acylsugar biosynthesis contribute to structural diversity specifically focusing on Solanaceae-type acylsugars.</p>","PeriodicalId":733,"journal":{"name":"Phytochemistry Reviews","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11101-024-09996-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plants display tremendous chemical diversity. Like all organisms, they possess a core set of metabolites for growth and development. However, plants are notorious for their specialized chemical repertoire. Biologically active specialized metabolites enable plants to interact with their environment and provide humans with diverse medicines. Specialized metabolites are derived from core metabolites, often using enzymes that evolved from core pathways in a lineage-specific manner. Biochemical understanding of plant specialized metabolic pathways provides insight into the evolutionary origins of chemical diversity and tools for engineering the production of biologically active metabolites. Acylsugars are a class of specialized metabolites occurring widely in the Solanaceae and other plant families where they contribute to fitness. Although assembled from simple core metabolic precursors, sugars and acyl chains, tremendous acylsugar structural diversity is observed across the Solanaceae family. Enzymes that catalyze the esterification of acyl chains to sugar cores have been well characterized from phylogenetically diverse species, and their biochemical diversity contributes to acylsugar structural variation. The upstream metabolic pathways that provide the acyl chain precursors also contribute to acylsugar structural variation. Yet, biochemical and genetic understanding of these upstream biosynthetic pathways is less well known. Here, we focus on recent advances in acyl chain biosynthesis and elongation pathways, the subcellular distribution of acylsugar biosynthesis, and how biochemical innovations in acylsugar biosynthesis contribute to structural diversity specifically focusing on Solanaceae-type acylsugars.
期刊介绍:
Phytochemistry Reviews is the sole review journal encompassing all facets of phytochemistry. It publishes peer-reviewed papers in six issues annually, including topical issues often stemming from meetings organized by the Phytochemical Society of Europe. Additionally, the journal welcomes original review papers that contribute to advancing knowledge in various aspects of plant chemistry, function, biosynthesis, effects on plant and animal physiology, pathology, and their application in agriculture and industry. Invited meeting papers are supplemented with additional review papers, providing a comprehensive overview of the current status across all areas of phytochemistry.