R. Jeeshma, V. V. Arya Lakshmi, Anjana James, Ranimol Stephen
{"title":"Polyhedral Oligomeric Silsesquioxane Coated Electrospun Nanofibrous PLA Membranes: Properties and Application","authors":"R. Jeeshma, V. V. Arya Lakshmi, Anjana James, Ranimol Stephen","doi":"10.1007/s10924-024-03350-1","DOIUrl":null,"url":null,"abstract":"<div><p>Poly (lactic acid) (PLA) membrane is fabricated through electrospinning, which effectively absorbs oil from the oil/water mixture. The prepared PLA electrospun membrane is hydrophobic with a water contact angle (WCA) of 117.2⁰. Introduction of POSS (polyhedral oligomeric silsesquioxane) particles as nanofiller into the PLA matrix, as well as a coating on the electrospun membrane, appreciably enhances the hydrophobicity and thermal stability of the nanofibrous membranes. The membranes become dense, less porous, and crystalline after heat treatment. The unannealed nanofibrous membrane with a highly porous, oleophilic surface helps to impart higher oil absorption properties than that of annealed membranes, which are 60.45 g/g and 66.03 g/g for palm oil and used engine oil respectively. The as-prepared PLA fibrous membranes can absorb oil from the oil-water interface, showing excellent recyclability and separation efficiency > 70%.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03350-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Poly (lactic acid) (PLA) membrane is fabricated through electrospinning, which effectively absorbs oil from the oil/water mixture. The prepared PLA electrospun membrane is hydrophobic with a water contact angle (WCA) of 117.2⁰. Introduction of POSS (polyhedral oligomeric silsesquioxane) particles as nanofiller into the PLA matrix, as well as a coating on the electrospun membrane, appreciably enhances the hydrophobicity and thermal stability of the nanofibrous membranes. The membranes become dense, less porous, and crystalline after heat treatment. The unannealed nanofibrous membrane with a highly porous, oleophilic surface helps to impart higher oil absorption properties than that of annealed membranes, which are 60.45 g/g and 66.03 g/g for palm oil and used engine oil respectively. The as-prepared PLA fibrous membranes can absorb oil from the oil-water interface, showing excellent recyclability and separation efficiency > 70%.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.