Deconstruction of unsaturated polymers through photo-mediated oxidation under O2

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hanlin Chen, Xin Guan, Puyan Zhang, Devavrat Sathe, Junpeng Wang
{"title":"Deconstruction of unsaturated polymers through photo-mediated oxidation under O2","authors":"Hanlin Chen, Xin Guan, Puyan Zhang, Devavrat Sathe, Junpeng Wang","doi":"10.1016/j.xcrp.2024.102104","DOIUrl":null,"url":null,"abstract":"<p>While oxidative cleavage has been a well-known strategy to degrade unsaturated polymers, most processes require harsh conditions and/or expensive oxidizing agents. Using O<sub>2</sub> to degrade polymers is highly desirable, but no reported process is well controlled for the chemical recycling of polymers. Here, we report a photo-mediated oxidative degradation process for unsaturated polymers under O<sub>2</sub> using an earth-abundant Mn catalyst, and the process is demonstrated with polybutadiene, polydicyclopentadiene, and dehydrogenated polyethylene. Nonactivated internal alkenes in these polymers can be effectively cleaved without elevated temperature or pressure. The oxidation process generates acetal as the main functionality, which can be used for further recycling. As a proof of concept, the oligomers with acetal end groups, resulting from the oxidation of polybutadiene, are shown to undergo transacetalization with polyols to form a polymer network. The oxidation process demonstrated here holds promise for the recycling of hydrocarbon polymers under mild conditions in a cost-effective fashion.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"80 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102104","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While oxidative cleavage has been a well-known strategy to degrade unsaturated polymers, most processes require harsh conditions and/or expensive oxidizing agents. Using O2 to degrade polymers is highly desirable, but no reported process is well controlled for the chemical recycling of polymers. Here, we report a photo-mediated oxidative degradation process for unsaturated polymers under O2 using an earth-abundant Mn catalyst, and the process is demonstrated with polybutadiene, polydicyclopentadiene, and dehydrogenated polyethylene. Nonactivated internal alkenes in these polymers can be effectively cleaved without elevated temperature or pressure. The oxidation process generates acetal as the main functionality, which can be used for further recycling. As a proof of concept, the oligomers with acetal end groups, resulting from the oxidation of polybutadiene, are shown to undergo transacetalization with polyols to form a polymer network. The oxidation process demonstrated here holds promise for the recycling of hydrocarbon polymers under mild conditions in a cost-effective fashion.

Abstract Image

在氧气条件下通过光介导氧化解构不饱和聚合物
虽然氧化裂解是一种众所周知的降解不饱和聚合物的策略,但大多数工艺都需要苛刻的条件和/或昂贵的氧化剂。利用氧气降解聚合物是非常理想的选择,但目前还没有报道称聚合物的化学回收过程可以得到很好的控制。在此,我们报告了一种在氧气条件下利用富土锰催化剂对不饱和聚合物进行光介导氧化降解的过程,并用聚丁二烯、聚二环戊二烯和脱氢聚乙烯对该过程进行了演示。这些聚合物中的非活化内烯无需升温或升压即可有效裂解。氧化过程产生的缩醛是主要的官能团,可用于进一步回收利用。作为概念验证,聚丁二烯氧化产生的带有缩醛末端基团的低聚物可与多元醇发生反乙醛化反应,形成聚合物网络。这里展示的氧化工艺有望在温和条件下以经济高效的方式回收碳氢化合物聚合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信