Electron-injection-engineering induced dual-phase MoO2.8F0.2/MoO2.4F0.6 heterostructure for magnesium storage

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Weixiao Wang, Fangyu Xiong, Shaohua Zhu, Mengyu Yan, Xiaobin Liao, Kesong Yu, Lianmeng Cui, Jinghui Chen, Junjun Wang, Ruoqi Lan, Jun Xie, Qinyou An, Liqiang Mai
{"title":"Electron-injection-engineering induced dual-phase MoO2.8F0.2/MoO2.4F0.6 heterostructure for magnesium storage","authors":"Weixiao Wang, Fangyu Xiong, Shaohua Zhu, Mengyu Yan, Xiaobin Liao, Kesong Yu, Lianmeng Cui, Jinghui Chen, Junjun Wang, Ruoqi Lan, Jun Xie, Qinyou An, Liqiang Mai","doi":"10.1093/nsr/nwae238","DOIUrl":null,"url":null,"abstract":"Rechargeable magnesium batteries (RMBs) have received incremental attention due to their high volumetric capacity and safety. Nevertheless, the sluggish diffusion kinetics of highly polarized Mg2+ in host lattices severely hinders the development of RMBs. Herein, we report an electron injection strategy for modulating Mo 4d-orbital splitting manner and firstly fabricate a dual-phase MoO2.8F0.2/MoO2.4F0.6 heterostructure to accelerate Mg2+ diffusion. The electron injection strategy triggers weak Jahn-Teller distortion in MoO6 octahedra and reorganization of the Mo 4d-orbital, leading to a partial phase transition from orthorhombic phase MoO2.8F0.2 to cubic phase MoO2.4F0.6. As a result, the designed heterostructure generates a built-in electric field, simultaneously improves its electronic conductivity and ionic diffusivity by at least one order of magnitude compared to MoO2.8F0.2 and MoO2.4F0.6. Importantly, the assembled MoO2.8F0.2/MoO2.4F0.6//Mg full cell exhibits a remarkable reversible capacity of 172.5 mA h g−1 at 0.1 A g−1, pushing forward the orbital-scale manipulation for high-performance RMBs.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"41 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae238","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable magnesium batteries (RMBs) have received incremental attention due to their high volumetric capacity and safety. Nevertheless, the sluggish diffusion kinetics of highly polarized Mg2+ in host lattices severely hinders the development of RMBs. Herein, we report an electron injection strategy for modulating Mo 4d-orbital splitting manner and firstly fabricate a dual-phase MoO2.8F0.2/MoO2.4F0.6 heterostructure to accelerate Mg2+ diffusion. The electron injection strategy triggers weak Jahn-Teller distortion in MoO6 octahedra and reorganization of the Mo 4d-orbital, leading to a partial phase transition from orthorhombic phase MoO2.8F0.2 to cubic phase MoO2.4F0.6. As a result, the designed heterostructure generates a built-in electric field, simultaneously improves its electronic conductivity and ionic diffusivity by at least one order of magnitude compared to MoO2.8F0.2 and MoO2.4F0.6. Importantly, the assembled MoO2.8F0.2/MoO2.4F0.6//Mg full cell exhibits a remarkable reversible capacity of 172.5 mA h g−1 at 0.1 A g−1, pushing forward the orbital-scale manipulation for high-performance RMBs.
用于镁储存的电子注入工程诱导双相 MoO2.8F0.2/MoO2.4F0.6 异质结构
可充电镁电池(RMB)因其高容量和安全性而受到越来越多的关注。然而,高极化 Mg2+ 在宿主晶格中缓慢的扩散动力学严重阻碍了可充电镁电池的发展。在此,我们报告了一种调节 Mo 4d 轨道分裂方式的电子注入策略,并首先制备了一种双相 MoO2.8F0.2/MoO2.4F0.6 异质结构,以加速 Mg2+ 扩散。电子注入策略引发了 MoO6 八面体的弱 Jahn-Teller 畸变和 Mo 4d-orbital 的重组,导致正方晶相 MoO2.8F0.2 向立方晶相 MoO2.4F0.6 的部分相变。因此,与 MoO2.8F0.2 和 MoO2.4F0.6 相比,所设计的异质结构能产生内置电场,同时将其电子导电性和离子扩散性提高了至少一个数量级。重要的是,MoO2.8F0.2/MoO2.4F0.6//Mg 全电池在 0.1 A g-1 的条件下显示出 172.5 mA h g-1 的显著可逆容量,推动了高性能人民币的轨道尺度操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信