{"title":"16-Channel Hybrid WDM-PDM-MDM (de) Multiplexer for Multi-Band Large-Capacity Optical Transmission System Based on Thick Si$_{3}$N$_{4}$ Platform","authors":"Deyue Ma;Xiwen He;Chen Zhou;Mingyue Xiao;Jiqiao Liu;Weibiao Chen;Zhiping Zhou","doi":"10.1109/JPHOT.2024.3426933","DOIUrl":null,"url":null,"abstract":"We propose a novel design of hybrid multi-band wavelength/polarization/mode (de)multiplexer based on 800 nm thick Si\n<inline-formula><tex-math>$_{3}$</tex-math></inline-formula>\nN\n<inline-formula><tex-math>$_{4}$</tex-math></inline-formula>\n platform. The 16 channels are enabled by asymmetric rib polarization beam splitters, subwavelength polarization rotators and asymmetric directional couplers, consisting of two operating frequency bands, dual polarization and four transmission modes (2\n<inline-formula><tex-math>$\\times 2\\times$</tex-math></inline-formula>\n4). A broad bandwidth range from 930 nm to 1600 nm is supported simultaneously on a same chip. This chip can achieve low insertion loss and crosstalk in the 100 nm range near the center wavelength (1550 nm and 980 nm). Our results demonstrate that all channels of the (de)multiplexer have an average insertion loss of less than −1.1 dB. In addition, the crosstalk in the same band is less than −20 dB, while less than −15 dB in different frequency bands. This hybrid (de)multiplexer chip has a great potential for application in multi-band large-capacity optical communication systems, especially in integrated multi-band (de)multiplexing systems.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10595402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10595402/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel design of hybrid multi-band wavelength/polarization/mode (de)multiplexer based on 800 nm thick Si
$_{3}$
N
$_{4}$
platform. The 16 channels are enabled by asymmetric rib polarization beam splitters, subwavelength polarization rotators and asymmetric directional couplers, consisting of two operating frequency bands, dual polarization and four transmission modes (2
$\times 2\times$
4). A broad bandwidth range from 930 nm to 1600 nm is supported simultaneously on a same chip. This chip can achieve low insertion loss and crosstalk in the 100 nm range near the center wavelength (1550 nm and 980 nm). Our results demonstrate that all channels of the (de)multiplexer have an average insertion loss of less than −1.1 dB. In addition, the crosstalk in the same band is less than −20 dB, while less than −15 dB in different frequency bands. This hybrid (de)multiplexer chip has a great potential for application in multi-band large-capacity optical communication systems, especially in integrated multi-band (de)multiplexing systems.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.