{"title":"Photonic Horn Jets and Whispering Gallery Modes in Dielectric Micro-Cylinders With Two Point-Source Illumination","authors":"Shadi A. Alboon;Qing Huo Liu;Ibrahim Mahariq","doi":"10.1109/JPHOT.2024.3427393","DOIUrl":null,"url":null,"abstract":"The interaction of light with micro-scale dielectric structures has garnered significant attention in recent years due to its potential applications in various fields ranging from photonics to biomedical imaging. In this context, this study investigates the generation of twin photonic jets from a dielectric micro-cylinder illuminated by two point-sources. The effect of different parameters on the jet's shape profile and length was analyzed. Those parameters include the cylinder's refractive index and radius, the source distance from the cylinder, and the vertical displacement between the sources. Innovatively, this study introduces the concept of ‘Horn Jets' to characterize the twin photonic jets resulting from the illuminated dielectric micro-cylinder, marking a significant conceptual advancement in the field. Moreover, the generation of whispering gallery modes (WGMs) is investigated. The outcomes obtained through the spectral element method highlight the possibility of generating WGMs by meticulously selecting the cylinder's radius and refractive index, under the scenario of two-point-source illuminations. The results show that the magnitude of the WGMs resonance significantly lies on the vertical displacement due to the resulting interference pattern's dark and bright fringes with the cylinder edges.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10596663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10596663/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction of light with micro-scale dielectric structures has garnered significant attention in recent years due to its potential applications in various fields ranging from photonics to biomedical imaging. In this context, this study investigates the generation of twin photonic jets from a dielectric micro-cylinder illuminated by two point-sources. The effect of different parameters on the jet's shape profile and length was analyzed. Those parameters include the cylinder's refractive index and radius, the source distance from the cylinder, and the vertical displacement between the sources. Innovatively, this study introduces the concept of ‘Horn Jets' to characterize the twin photonic jets resulting from the illuminated dielectric micro-cylinder, marking a significant conceptual advancement in the field. Moreover, the generation of whispering gallery modes (WGMs) is investigated. The outcomes obtained through the spectral element method highlight the possibility of generating WGMs by meticulously selecting the cylinder's radius and refractive index, under the scenario of two-point-source illuminations. The results show that the magnitude of the WGMs resonance significantly lies on the vertical displacement due to the resulting interference pattern's dark and bright fringes with the cylinder edges.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.