Eliana Sánchez, Alejandro Cosimo, Oliver Brüls, Alberto Cardona, Federico J. Cavalieri
{"title":"Simulation of impacts between spherical rigid bodies with frictional effects","authors":"Eliana Sánchez, Alejandro Cosimo, Oliver Brüls, Alberto Cardona, Federico J. Cavalieri","doi":"10.1002/nme.7556","DOIUrl":null,"url":null,"abstract":"<p>This work studies the impact between spherical rigid bodies in the frame of nonsmooth contact dynamics considering friction effects. A new impact element formulation based on the classical instantaneous local Newton impact law is presented. The kinematics properties of the spheres are described by a rigid body formulation with translational and rotational degrees of freedom referred to an inertial frame. In addition, an extension of the nonsmooth generalized-<span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n </mrow>\n <annotation>$$ \\alpha $$</annotation>\n </semantics></math> time integration scheme applied to collisions with multiple impacts including Coulomb's friction law is given. Six numerical examples are presented to evaluate the robustness and the performance of the proposed methodology.</p>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7556","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work studies the impact between spherical rigid bodies in the frame of nonsmooth contact dynamics considering friction effects. A new impact element formulation based on the classical instantaneous local Newton impact law is presented. The kinematics properties of the spheres are described by a rigid body formulation with translational and rotational degrees of freedom referred to an inertial frame. In addition, an extension of the nonsmooth generalized- time integration scheme applied to collisions with multiple impacts including Coulomb's friction law is given. Six numerical examples are presented to evaluate the robustness and the performance of the proposed methodology.
期刊介绍:
The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems.
The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.