ZMFISC: Zhu‐Ming data set with a convolutional neural network for identifying Indo‐Pacific humpback dolphins (Sousa chinensis)

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Minghao Yang, Zhongrui Wu, Xiqing Zang, Changlong Jin, Qian Zhu
{"title":"ZMFISC: Zhu‐Ming data set with a convolutional neural network for identifying Indo‐Pacific humpback dolphins (Sousa chinensis)","authors":"Minghao Yang, Zhongrui Wu, Xiqing Zang, Changlong Jin, Qian Zhu","doi":"10.1111/mms.13154","DOIUrl":null,"url":null,"abstract":"The Indo‐Pacific humpback dolphin (<jats:italic>Sousa chinensis</jats:italic>) is a small‐toothed whale species that inhabits estuaries and shallow coastal waters from the eastern Indian Ocean to the western Pacific, and faces significant negative impacts from anthropogenic activities. The noninvasive Photo‐identification method enables individual identification and abundance estimation based on natural markings of cetaceans without disrupting their natural behaviors. Currently, the identification of <jats:italic>S. chinensis</jats:italic> using photographs relies primarily on time‐intensive visual recognition by experienced researchers. Through field surveys conducted in the west Huangmao Sea area from 2012 to 2021, we compiled the Zhu‐Ming data set focusing on <jats:italic>S. chinensis</jats:italic> (ZMSC), consisting of 479 individuals and 5,196 photos. Utilizing the ZMSC, we proposed a Few‐Shot Identification method for <jats:italic>S. chinensis</jats:italic> (FISC), which achieved 85.93% identification Top‐1 accuracy. The implementation of proper preprocessing steps and data augmentation techniques has significantly enhanced the performance of FISC, while visualizing network weights has improved its interpretability. Despite the remaining challenges of data imbalance and the inability to automatically allocate new labels, ZMFISC alleviates the challenge of the current heavy reliance on time‐intensive visual recognition methods by researchers for individual identification of <jats:italic>S. chinensis</jats:italic> and provide a valuable tool to enhance future conservation efforts for <jats:italic>S. chinensis</jats:italic>.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mms.13154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Indo‐Pacific humpback dolphin (Sousa chinensis) is a small‐toothed whale species that inhabits estuaries and shallow coastal waters from the eastern Indian Ocean to the western Pacific, and faces significant negative impacts from anthropogenic activities. The noninvasive Photo‐identification method enables individual identification and abundance estimation based on natural markings of cetaceans without disrupting their natural behaviors. Currently, the identification of S. chinensis using photographs relies primarily on time‐intensive visual recognition by experienced researchers. Through field surveys conducted in the west Huangmao Sea area from 2012 to 2021, we compiled the Zhu‐Ming data set focusing on S. chinensis (ZMSC), consisting of 479 individuals and 5,196 photos. Utilizing the ZMSC, we proposed a Few‐Shot Identification method for S. chinensis (FISC), which achieved 85.93% identification Top‐1 accuracy. The implementation of proper preprocessing steps and data augmentation techniques has significantly enhanced the performance of FISC, while visualizing network weights has improved its interpretability. Despite the remaining challenges of data imbalance and the inability to automatically allocate new labels, ZMFISC alleviates the challenge of the current heavy reliance on time‐intensive visual recognition methods by researchers for individual identification of S. chinensis and provide a valuable tool to enhance future conservation efforts for S. chinensis.
ZMFISC:利用卷积神经网络识别印度洋-太平洋驼背海豚(Sousa chinensis)的朱明数据集
印度洋-太平洋中华白海豚(Sousa chinensis)是一种小齿鲸,栖息于从东印度洋到西太平洋的河口和浅海水域,面临着人类活动带来的巨大负面影响。非侵入性的照片识别方法可以在不干扰鲸豚自然行为的情况下,根据鲸豚的自然标记进行个体识别和数量估算。目前,利用照片识别蓑鲉主要依赖于经验丰富的研究人员耗时耗力的视觉识别。通过 2012 年至 2021 年在黄茅海西部海域的野外调查,我们建立了朱铭数据集(ZMSC),其中包括 479 个个体和 5,196 张照片。利用朱明数据集,我们提出了一种 "短照识别 "方法(FISC),其识别准确率达到了 85.93% 的 Top-1。适当的预处理步骤和数据扩增技术的实施大大提高了 FISC 的性能,而网络权重的可视化则提高了其可解释性。尽管仍然存在数据不平衡和无法自动分配新标签的挑战,但 ZMFISC 缓解了目前研究人员严重依赖时间密集型的视觉识别方法来进行盐肤木个体鉴定的挑战,并为今后加强盐肤木的保护工作提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信